
Discrete Variables and Gradient Estimators

This assignment is designed to get you comfortable deriving gradient estimators, and optimizing dis-
tributions over discrete random variables.

For most questions, the answers should be a few lines of derivations. Throughout, you can assume that
p(b|θ) is differentiable w.r.t. θ.

Problem 1 (Unbiasedness of the score-function estimator, 8 points)
Gradient estimators are simply functions that take a parameter vector θ and a (possibly stochastic)
function L(θ), and return another vector ĝ of the same size as θ. Gradient estimators are generally
more useful the closer their estimate is to the true gradient, i.e. when ĝ is close to ∂

∂θ L(θ).
All else being equal, it’s useful for a gradient estimator to be unbiased. The unbiasedness of a

gradient estimator guarantees that, if we decay the step size and run stochastic gradient descent for
long enough (see Robbins & Monroe), it will converge to a local optimum.

The standard REINFORCE, or score-function estimator is defined as:

ĝSF[ f ] = f (b)
∂

∂θ
log p(b|θ), b ∼ p(b|θ) (1)

(a) [2 points] First, let’s warm up with the score function. Prove that the score function has zero ex-
pectation, i.e. Ep(x|θ) [∇θ log p(x|θ)] = 0. Assume that you can swap the derivative and integral
operators.

(b) [2 points] Show that Ep(b|θ)

[
f (b) ∂

∂θ log p(b|θ)
]
= ∂

∂θ Ep(b|θ) [ f (b)].

(c) [2 points] Show that Ep(b|θ)

[
[ f (b)− c] ∂

∂θ log p(b|θ)
]
= ∂

∂θ Ep(b|θ) [ f (b)] for any fixed c.

(d) [2 points] If the baseline depends on b, then REINFORCE will in general give biased gradient
estimates. Give an example where Ep(b|θ)

[
[ f (b)− c(b)] ∂

∂θ log p(b|θ)
]
6= ∂

∂θ Ep(b|θ) [ f (b)] for some
function c(b), and show that it is biased.

The takeaway is that you can use a baseline to reduce the variance of REINFORCE, but not one that
depends on the current action.



Problem 2 (Comparing variances of gradient estimators, 16 points)
If we restrict ourselves to consider only unbiased gradient estimators, then the main (and perhaps
only) property we need to worry about is the variance of our estimators. In general, optimizing with
a lower-variance unbiased estimator will converge faster than a high-variance unbiased estimator.
However, which estimator has the lowest variance can depend on the function being optimized. In this
question, we’ll look at which gradient estimators scale to large numbers of parameters, by computing
their variance as a function of dimension.

For simplicity, we’ll consider a toy problem. The goal will be to estimate gradients of the expecta-
tion of a sum of one-dimensional Gaussians. Each Gaussian has unit variance, and its mean is given
by an element of the D-dimensional parameter vector θ:

f (x) =
D

∑
d=1

xd (2)

L(θ) = Ex∼p(x|θ) [ f (x)] = Ex∼N (θ,I)

[
D

∑
d=1

xd

]
(3)

(a) [2 points] As a warm-up, compute the variance of a single-sample simple Monte Carlo estimator
of the objective L(θ):

L̂MC =
D

∑
d=1

xd, where each xd ∼iid N (θd, 1) (4)

That is, compute V
[
L̂MC

]
as a function of D.

(b) [2 points] Recall the definition of the score-function, or REINFORCE estimator:

ĝSF[ f ] = [ f (x)− c(θ)]
∂

∂θ
log p(x|θ), x ∼ p(x|θ) (5)

Derive a closed form for this gradient estimator for the objective defined above as a deterministic
function of ε, a D-dimensional vector of standard normals. Set the baseline to c(θ) = ∑D

d=1 θd.

(c) [4 points] Derive the variance of the above gradient estimator. Because gradients are D-dimensional
vectors, their covariance is a D × D matrix. To make things easier, we’ll consider only the vari-
ance of the gradient with respect to the first element of the parameter vector, θ1. That is, derive
the scalar value V

[
ĝSF

1
]

as a function of D. Hint: The third moment of a standard normal is 0,
and the fourth moment is 3. As a sanity check, consider the case where D = 1.

(d) [4 points] Next, let’s look at the gold standard of gradient estimators, the reparameterization
gradient estimator, where we reparameterize x = T(θ, ε):

ĝREPARAM[ f ] =
∂ f
∂x

∂x
∂θ

, ε ∼ p(ε) (6)

In this case, we can use the reparameterization x = θ + ε, with ε ∼ N (0, I). Derive this gradient
estimator, and give V

[
ĝREPARAM

1
]

as a function of D.

(e) [2 points] Finally, let’s consider a more exotic gradient estimator, Evolution Strategies. Follow-
ing [Salimans et. al., 2016], we’ll choose a meta-policy p(θ|ψ) = N (θ|ψ, σ2 I). In this case, ĝES

estimates ∂
∂ψ Ep(θ|ψ,σ) [L(θ)], where ψ specifies the mean of the distribution over θ.

ĝES[ f ] = [ f (x)− c(ψ)]
∂

∂ψ
log p(θ|ψ, σ), x ∼ p(x|θ), θ ∼ p(θ|ψ, σ) (7)

= [ f (x)− c(ψ)]
∂

∂ψ
logN (θ|ψ, σ2 I) x ∼ N (x|θ, I), θ ∼ N (θ|ψ, σ2 I) (8)

Set the baseline to c(ψ) = ∑D
d=1 ψd. Derive a closed form for this gradient estimator as a deter-

ministic function of σ and two D-dimensional vectors of standard normals, εx and εθ .

(f) [2 points] Compute V
[
ĝES

1
]

as a function of D and σ.



Problem 3 (Sometimes stochastic policies are necessarily suboptimal, 8 points)
In reinforcement learning and hard attention models, we often parameterize a policy to stochastically
choose actions according to the current state. However, in many situations, the best policy is necessar-
ily deterministic.

Given the objective

L(θ) = Ep(b|θ) [ f (b)] (9)

where b is a Bernoulli random variable,

(a) [4 points] Show that for any f where f (0) 6= f (1), that L(θ) has local optima only for determin-
istic policies, i.e. values of θ = 0 or θ = 1. Proof by diagram is fine.

(b) [4 points] Show that if L(θ) = Ep(b|θ) [ f (b, θ)], give an example function f where a non-deterministic
policy is optimal. Again, proof by diagram is fine.

The takeaway is that, for a fully-observed state in a non-adversarial setting, the only reason to use
a stochastic policy is to make optimization easier.



Problem 4 (Representing and computing Categorical distributions, 8 points)
There are several ways to parameterization Categorical distributions.

(a) [1 point] If we parameterize a D-dimensional categorial distribution using a D-dimensional vec-
tor θ as

p(c|θ) = θc (10)

what is the allowable range of the vector θ? Or, answer this question: does setting all θc = 0
result in a valid probability distribution over c?

(b) [1 point] One problem with this parameterization is that it is hard to represent very small prob-
abilities. If we parameterize a D-dimensional categorial distribution as

log p(c|θ) = θc (11)

what is the allowable range of the vector θ? Or, answer this question: does setting all θc = 0
result in a valid probability distribution over c?

What is the computational cost of evaluating log p(c|θ), for a particular value of c, as a function
of D?

(c) [2 points] Another problem is that optimizing a point in the simplex requires using a constrained
optimization routine.

If we parameterize a D-dimensional categorial distribution as

log p(c|θ) = θc − log
D

∑
c′=1

exp θc′ (12)

what is the allowable range of the vector θ? Or: answer this question: does setting all θc = 0
result in a valid probability distribution over c? What is the computational cost of evaluating
log p(c|θ), for a particular value of c, as a function of D?

(d) [2 points] Using the parameterization

log p(c|θ) = θc − log
D

∑
c′=1

exp θc′ (13)

write the gradient of log p(c|θ) w.r.t. the vector θ. What is the computational complexity of eval-
uating this gradient, for a particular value of c, as a function of D?

(e) [2 points] Now let’s consider the analogous problem of parameterizing a Bernoulli random vari-
able. Give a monotonic, numerically stable paramaterization for log p(b|θ) such that all θ ∈ R

give valid probabilities, and there is a one-to-one correspondence between θ and p(b). Hint: One
good approach is to use the logsumexp trick.



Problem 5 (BONUS: Optimal surrogates. 15 points)
Warning: These questions are probably hard and time-consuming. I don’t know the answers and I
don’t expect more than one or two people to get them. For details on p(z|b, θ), see the REBAR or
RELAX papers.

Consider the objective

L(θ) = Ep(b|θ) [ f (b)] = Ep(b|θ)

[
(b− t)2

]
(14)

where b is a single Bernoulli random variable.

(a) [Hard 5 points] The REBAR estimator is given by:

ĝREBAR = [ f (b)− η f (σλ(z̃))]
∂

∂θ
log p(b|θ) + ∂

∂θ
η f (σλ(z))−

∂

∂θ
η f (σλ(z̃)) (15)

b = H(z), z ∼ p(z|θ), z̃ ∼ p(z|b, θ)

For this objective, find the optimal (as in lowest variance) temperature λ and scale η for REBAR
as a function of t and θ.

(b) [Harder, 5 points] The discrete version of the LAX estimator is given by:

ĝDLAX = f (b)
∂

∂θ
log p(b|θ)− cφ(z)

∂

∂θ
log p(z|θ) + ∂

∂θ
cφ(z), b = H(z), z ∼ p(z|θ). (16)

Find the optimal surrogate cφ(z) for DLAX as a function of t and θ. Compute the variance of this
estimator as a function of t and θ.

(c) [Hardest, 5 points]

ĝRELAX =
[

f (b)− cφ(z̃)
] ∂

∂θ
log p(b|θ) + ∂

∂θ
cφ(z)−

∂

∂θ
cφ(z̃) (17)

b = H(z), z ∼ p(z|θ), z̃ ∼ p(z|b, θ)

Find the optimal surrogate cφ(z) for RELAX as a function of t and θ. Compute the variance of
this estimator as a function of t and θ.


