Background Knowledge Quiz

1. Your name:
2. What year and program are you in?
3. Are you taking this course for credit, auditing, or on the waiting list?

Gaussians

4. If $p(x)=\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$,
(a) For some $x \in \mathbb{R}, \mu \in \mathbb{R}, \sigma \in \mathbb{R}^{+}$, $\operatorname{can} p(x)<0$?
(b) For some $x \in \mathbb{R}, \mu \in \mathbb{R}, \sigma \in \mathbb{R}^{+}, \operatorname{can} p(x)>1$?
5. If $p(x)=\mathcal{N}(x \mid \mu, \Sigma)$ with $x \in \mathbb{R}^{D}, \mu \in \mathbb{R}^{D}, \Sigma \in \mathbb{R}^{D \times D}$, (a multivariate Gaussian),
(a) What is the computational complexity (the asymptotic time cost) of evaluating $p(x)$?
(b) What restrictions are there on Σ in order for it to be a valid covariance matrix?

Derivatives

6. If A is a fixed matrix and \mathbf{x} is a vector, what is $\frac{\partial(A \mathbf{x})_{i}}{\partial \mathbf{x}_{j}}$?
7. Given a composition of functions $f(x)=a(b(c(x)))$, we can evaluate its derivative using the chain rule - just multiply together the Jacobian of each function. What is the fastest order to multiply this product of Jacobians $J_{a} \times J_{b} \times J_{c}$, if $f(x)$ is a vector-input, scalar-output function?
8. How could one form an unbiased estimate of $\nabla_{x} \int f(x, \theta) p(\theta) d \theta$ using samples from $p(\theta)$, and derivatives of f ?

Distributions

9. In the natural exponential family of distributions, $p(x \mid \theta)=f(x) g(\theta) \exp \{x \theta\}$. What must $g(\theta)$ be in order for $p(x \mid \theta)$ to be a valid probability distribution?
10. One way to specify a Categorical (discrete) distribution using an unconstrained vector $\mathrm{x} \in \mathbb{R}^{D}$ is with the softmax function: $p(y=c \mid \mathbf{x})=\frac{\exp \left\{x_{c}\right\}}{\sum_{c^{\prime}=1}^{D} \exp \left\{x_{c^{\prime}}\right\}}$:
(a) What could go wrong numerically in evaluating $p(y=c \mid \mathbf{x})$ if some elements of \mathbf{x} are large?
(b) How could one fix this?
