Background Knowledge Quiz

1. Your name:
2. What year and program are you in?
3. Are you taking this course for credit, auditing, or on the waiting list?

Gaussians

4. If \(p(x) = \mathcal{N}(x|\mu, \sigma^2) \),
 (a) For some \(x \in \mathbb{R}, \mu \in \mathbb{R}, \sigma \in \mathbb{R}^+ \), can \(p(x) < 0 \)?
 (b) For some \(x \in \mathbb{R}, \mu \in \mathbb{R}, \sigma \in \mathbb{R}^+ \), can \(p(x) > 1 \)?

5. If \(p(x) = \mathcal{N}(x|\mu, \Sigma) \) with \(x \in \mathbb{R}^D, \mu \in \mathbb{R}^D, \Sigma \in \mathbb{R}^{D \times D} \), (a multivariate Gaussian),
 (a) What is the computational complexity (the asymptotic time cost) of evaluating \(p(x) \)?
 (b) What restrictions are there on \(\Sigma \) in order for it to be a valid covariance matrix?

Derivatives

6. If \(A \) is a fixed matrix and \(x \) is a vector, what is \(\frac{\partial (Ax)_i}{\partial x_j} \)?

7. Given a composition of functions \(f(x) = a(b(c(x))) \), we can evaluate its derivative using the chain rule - just multiply together the Jacobian of each function. What is the fastest order to multiply this product of Jacobians \(J_a \times J_b \times J_c \) if \(f(x) \) is a vector-input, scalar-output function?

8. How could one form an unbiased estimate of \(\nabla_x \int f(x, \theta)p(\theta)d\theta \) using samples from \(p(\theta) \), and derivatives of \(f \)?

Distributions

9. In the natural exponential family of distributions, \(p(x|\theta) = f(x)g(\theta)\exp\{x\theta\} \). What must \(g(\theta) \) be in order for \(p(x|\theta) \) to be a valid probability distribution?

10. One way to specify a Categorical (discrete) distribution using an unconstrained vector \(x \in \mathbb{R}^D \) is with the softmax function: \(p(y = c|x) = \frac{\exp\{x_c\}}{\sum_{c'=1}^{D} \exp\{x_{c'}\}} \).
 (a) What could go wrong numerically in evaluating \(p(y = c|x) \) if some elements of \(x \) are large?
 (b) How could one fix this?