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Motivation

Scenes naturally decompose into objects that...
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Are arranged in space
Have visual properties
Have physical properties

Have functional relationships with each other

N
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High-Level Approach

> Generative model

» Goal is good representations not reconstructions
> Partly-specified latent structure

» Must have structure without being overly rigid
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Main Contribution

» Variable dimensionality of latent space (list of vectors)

» Treats inference as an iterative process, using an RNN to
attend to one object at a time

» Learn the appropriate number of iterative steps (and thus the
appropriate number of object latent variable representations)
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A Bayesian Approach

Sl — P (x12) pj (2)
p(z[x) P (%)

Given image x and model pj (x|z) p7 (z), we want to recover the
underlying scene description, z, by calculating p (z|x).

> p; (z) captures our model's assumptions about the underlying
scene

> pj (x|z) models how an image is generated from a scene
description
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Handling a Variable-Length Scene Descriptor

v

Assume that z' is a group of variables that describes (type,
appearance, pose, etc.) a single object in the scene

v

z then becomes a latent, variable-length, scene descriptor,
z= (21,22, ...,z”)

Since the number of objects in the scene will vary, we assume
the following:

v

N

() =S pu(n) / o8 (2ln) pj (x|2) dz

n=1

v

But... this is intractable
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Inference

> Let's learn gg(z, n|x) an approximation of the true posterior
that minimizes the divergence KL[q4(z, n|x)||pj(z, n|x)]
» Two new challenges:
» Trans-Dimensionality: the size of the latent space, n, is a

random variable itself
» Symmetry: symmetry arises from different assignments of

objects to z/
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Inference (cont'd)

» Overcome these challenges by formulating inference as an
iterative process performed by an RNN

» To simplify, parameterize the number of objects, n, as a
variable length vector, z,.e, consisting of n ones followed by a
single zero.

n
q¢(z, Zpres|x) = q(]ﬁ(zpres'“rl = 0|len’ X) H q¢(Z', Z;I)res = 1|21:I_17 X)
i=1



Learning

Can now jointly optimize the parameters 6 of the model and ¢ of
the inference network by maximizing a lower bound on the
marginal likelihood of an image under the model:

log pa(x) > £(0.6) = Eq, [mg Pe(“”)]

q4(z, n|x)
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AIR Implementation
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Figure: Left: Assumed generative model. Right: AIR inference model.
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AIR Implementation (cont'd)

x
/

f-
/

B 3

Figure: Interaction between inference and generative models.
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A slight variation: DAIR

Decoder
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Figure: The difference-AIR (DAIR) model
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Evaluation: Multi-MNIST
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Figure: Multi-MNIST results with attention windows shown
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Evaluation: Multi-MNIST Generalization
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Figure: Generalization to numbers of digits not seen in training
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Evaluation: Representational Power
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Figure: Left: Predicting sum of two digits. Right: Determine if digits

appear in a
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An extension: 3D Scenes

> Replace generative network with a 3D graphics renderer

> Z.hat becomes a discrete variable identifying the object from a
small set of possibilities

> Zyhere NOW represents position and orientation
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Figure: 3D reconstruction samples
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Takeaways

» Model structure can provide an inductive bias that results in
interpretable latent representations

» Variable-sized latent spaces can be achieved through iterative
inference that learns when to 'stop’
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