Adversarial Autoencoders

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, Brendan Frey

Presented by: Paul Vicol

Outline

- Adversarial Autoencoders
 - AAE with *continuous* prior distributions
 - AAE with *discrete* prior distributions
 - $\circ \quad \text{AAE vs VAE}$
- Wasserstein Autoencoders
 - Generalization of Adversarial Autoencoders
 - Theoretical Justification for AAEs

Regularizing Autoencoders

- Classical *unregularized* autoencoders minimize a reconstruction loss $||x \hat{x}||^2$
- This yields an *unstructured latent space*
 - Examples from the data distribution are mapped to codes scattered in the space
 - No constraint that similar inputs are mapped to nearby points in the latent space
 - We cannot sample codes to generate novel examples
- VAEs are one approach to regularizing the latent distribution

Adversarial Autoencoders - Motivation

• **Goal:** An approach to *impose structure* on the latent space of an autoencoder

- Idea: Train an autoencoder with an *adversarial loss* to match the distribution of the latent space to an arbitrary prior
 - Can use any prior that we can sample from either continuous (Gaussian) or discrete (Categorical)

AAE Architecture

 Adversarial autoencoders are generative autoencoders that use *adversarial* training to impose an arbitrary prior on the latent code

Training an AAE - Phase 1

1. The <u>reconstruction phase</u>: Update the encoder and decoder to minimize reconstruction error

Training an AAE - Phase 2

2. <u>**Regularization phase</u>**: Update discriminator to distinguish true prior samples from generated samples; update generator to fool the discriminator</u>

AAE vs VAE

- VAEs use a KL divergence term to impose a prior on the latent space
- AAEs use adversarial training to match the latent distribution with the prior

$$\mathcal{L} = \mathbb{E}_{x} \begin{bmatrix} \mathbb{E}_{q(z|x)} [-\log p(x|z)] \end{bmatrix} + \mathbb{E}_{x} \begin{bmatrix} \mathrm{KL}(q(z|x)||p(z)) \end{bmatrix} \end{bmatrix}$$
Reconstruction Error
KL Regularizer
Replaced by adversarial loss in AAE

- Why would we use an AAE instead of a VAE?
 - To backprop through the KL divergence we must have access to the functional form of the prior distribution p(z)
 - In an AAE, we just need to be able to sample from the prior to induce the latent distribution to match the prior

AAE vs VAE: Latent Space

• Imposing a *Spherical 2D Gaussian prior* on the latent space

AAE

VAE

AAE vs VAE: Latent Space

• Imposing a *mixture of 10 2D Gaussians* prior on the latent space

GAN for Discrete Latent Structure

• Core idea: Use a discriminator to check that a latent variable is discrete

GAN for Discrete Latent Structure

- D_{cat} induces the softmax output \mathcal{Y} to be *highly peaked* at one value
- Similar to continuous relaxation with temperature annealing, but does not require setting a temperature or annealing schedule

Semi-Supervised Adversarial Autoencoders

- Model for semi-supervised learning that exploits the generative description of the unlabeled data to improve classification performance
- Assume the data is generated as follows:

 $p(y) = \operatorname{Cat}(y)$ $p(z) = \mathcal{N}(z|0, I)$

- Now the encoder predicts both the discrete class y (content) and the continuous code z (style)
- The decoder conditions on both the class label and style vector

Semi-Supervised Adversarial Autoencoders

Semi-Supervised Adversarial Autoencoders

Semi-Supervised Classification Results

• AAEs outperform VAEs

	MNIST (100)	MNIST (1000)	MNIST (All)	SVHN (1000)
NN Baseline	25.80	8.73	1.25	47.50
VAE (M1) + TSVM	$11.82 (\pm 0.25)$	$4.24~(\pm 0.07)$	-	55.33 (± 0.11)
VAE (M2)	$11.97 (\pm 1.71)$	$3.60~(\pm 0.56)$	-	-
VAE $(M1 + M2)$	$3.33 (\pm 0.14)$	$2.40~(\pm 0.02)$	0.96	$36.02 (\pm 0.10)$
VAT	2.33	1.36	$0.64~(\pm 0.04)$	24.63
CatGAN	$1.91 (\pm 0.1)$	$1.73~(\pm 0.18)$	0.91	-
Ladder Networks	$1.06 \ (\pm 0.37)$	$0.84~(\pm 0.08)$	$0.57~(\pm 0.02)$	-
ADGM	$0.96 (\pm 0.02)$	-	-	$16.61 (\pm 0.24)$
Adversarial Autoencoders	$1.90 (\pm 0.10)$	$1.60~(\pm 0.08)$	$0.85 (\pm 0.02)$	17.70 (± 0.30)
Table 2: Sami supervised classification performance (arror rate) on MNIST and SVHN				

Table 2: Semi-supervised classification performance (error-rate) on MNIST and SVHN.

Unsupervised Clustering with AAEs

- An AAE can disentangle *discrete class variables* from continuous latent style variables without supervision
- The inference network q(y|x) predicts one-hot vector with K = num clusters

Figure 9: Unsupervised clustering of MNIST using the AAE with 16 clusters. Each row corresponds to one cluster with the first image being the cluster head. (see text)

Adversarial Autoencoder Summary

<u>Pros</u>

- Flexible approach to impose arbitrary distributions over the latent space
- Works with any distribution you can sample from, continuous and discrete
- Does not require temperature/annealing hyperparameters

<u>Cons</u>

- May be challenging to train due to the GAN objective
- Not scalable to many latent variables \rightarrow need a discriminator for each

Wasserstein Auto-Encoders (Oral, ICLR 2018)

- Generative models (VAEs & GANs) try to minimize discrepancy measures between the data distribution P_X and the model distribution P_G
- WAE minimizes a penalized form of the Wasserstein distance between the model distribution and the target distribution:

$$D_{\text{WAE}}(P_X, P_G) := \inf_{\substack{Q(Z|X) \in \mathcal{Q}}} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)} \left[c(X, G(Z)) \right] + \lambda \cdot \mathcal{D}_Z(Q_Z, P_Z)$$

Reconstruction cost

Regularizer encourages the encoded distribution to match the prior

WAE - Justification for AAEs

• <u>Theoretical justification for AAEs:</u>

- When $c(x,y) = ||x-y||_2^2$ WAE = AAE
- AAEs minimize the 2-Wasserstein distance between P_X and P_G

• WAE generalizes AAE in two ways:

- 1. Can use any cost function c(x,y) in the input space \mathcal{X}
- 2. Can use any discrepancy measure D_Z in the latent space \mathcal{Z}
 - Not just an adversarial one

Thank you!