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Regularizing Autoencoders

e Classical unregularized autoencoders minimize a reconstruction loss ||z — 2|

e This yields an unstructured latent space

o Examples from the data distribution are mapped to codes scattered in the space
o No constraint that similar inputs are mapped to nearby points in the latent space
o We cannot sample codes to generate novel examples

e VAEs are one approach to regularizing the latent distribution



Adversarial Autoencoders - Motivation

e Goal: An approach to impose structure on the latent space of an autoencoder

e Idea: Train an autoencoder with an adversarial loss to match the distribution

of the latent space to an arbitrary prior
o Can use any prior that we can sample from either continuous (Gaussian) or
discrete (Categorical)



AAE Architecture

e Adversarial autoencoders are generative autoencoders that use adversarial
training to impose an arbitrary prior on the latent code
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Training an AAE - Phase 1

1. The reconstruction phase: Update the encoder and decoder to minimize
reconstruction error

q(z|x) z ~ q(z|z) p(x|2)
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2.

Training an AAE - Phase 2

Reqularization phase: Update discriminator to distinguish true prior samples
from generated samples; update generator to fool the discriminator

q(z|T) z ~ q(z|z)
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AAE vs VAE

e VAEs use a KL divergence term to impose a prior on the latent space
e AAEs use adversarial training to match the latent distribution with the prior

Reconstruction Error KL Regularizer

l

Replaced by adversarial loss in AAE

e Why would we use an AAE instead of a VAE?

o To backprop through the KL divergence we must have access to the functional
form of the prior distribution p(z)

o In an AAE, we just need to be able to sample from the prior to induce the latent
distribution to match the prior



AAE vs VAE: Latent Space

e Imposing a Spherical 2D Gaussian prior on the latent space

Gaps in the latent space; not well-packed
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AAE vs VAE: Latent Space

e Imposing a mixture of 10 2D Gaussians prior on the latent space

VAE emphasizes the modes of the distribution; has
systematic differences from the prior
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GAN for Discrete Latent Structure
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e Core idea: Use a discriminator to check that a latent variable is discrete




GAN for Discrete Latent Structure
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e )., induces the softmax output ¥ to be highly peaked at one value
e Similar to continuous relaxation with temperature annealing, but does not
require setting a temperature or annealing schedule



Semi-Supervised Adversarial Autoencoders

e Model for semi-supervised learning that exploits the generative description of
the unlabeled data to improve classification performance
e Assume the data is generated as follows:

p(y) = Cat(y)
p(z) = N (2]0,1)

e Now the encoder predicts both the discrete class y (content) and the
continuous code z (style)
e The decoder conditions on both the class label and style vector



Semi-Supervised Adversarial Autoencoders




Semi-Supervised Adversarial Autoencoders

Imposes a discrete (categorical)
distribution on the latent class variable
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Semi-Supervised Classification Results

® AAEs outperform VAEs

MNIST (100) | MNIST (1000) | MNIST (All) SVHN (1000)
NN Baseline 25.80 8.73 1.25 47.50
VAE (M) + TSVM 11.82 (£0.25) | 4.24 (£0.07) : 55.33 (£0.11)
VAE (M2) 11.97 (£1.71) | 3.60 (£0.56) : .
VAE (M1 + M2) 3.33 (1+0:14) 2.40 (£0.02) 0.96 36.02 (40.10)
VAT 2.33 1.36 0.64 (£0.04) 24.63
CatGAN 1.91 (£0.1) | 1.73 (£0.18) 0.91 .
Ladder Networks 1.06 (£0.37) | 0.84 (£0.08) | 0.57 (£0.02) :
ADGM 0.96 (£0.02) : . 16.61 (+0.24)
Adversarial Autoencoders || 1.90 (+0.10) | 1.60 (+0.08) | 0.85 (+0.02) || 17.70 (£0.30)

Table 2: Semi-supervised classification performance (error-rate) on MNIST and SVHN.




Unsupervised Clustering with AAEs

An AAE can disentangle discrete class variables from continuous latent style

variables without supervision

The inference network q(y|x) predicts one-hot vector with K = num clusters
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Figure 9: Unsupervised clustering of MNIST using the AAE with 16 clusters. Each row corresponds
to one cluster with the first image being the cluster head. (see text)



Adversarial Autoencoder Summary

Pros

e Flexible approach to impose arbitrary distributions over the latent space
e Works with any distribution you can sample from, continuous and discrete
e Does not require temperature/annealing hyperparameters

Cons
e May be challenging to train due to the GAN objective
e Not scalable to many latent variables — need a discriminator for each



Wasserstein Auto-Encoders (Oral, ICLR 2018)

Generative models (VAEs & GANSs) try to minimize discrepancy measures
between the data distribution Px and the model distribution Pg

WAE minimizes a penalized form of the Wasserstein distance between the
model distribution and the target distribution:
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WAE - Justification for AAEs

e Theoretical justification for AAEs:
e When c(z,y) = ||z —y||3 WAE = AAE
e AAEs minimize the 2-Wasserstein distance between Px and Pg

o WAE generalizes AAE in two ways:
1. Can use any cost function c(z,y) in the input space X

2. Can use any discrepancy measure D in the latent space Z
e Not just an adversarial one



Thank you!




