Adversarially Regularized Autoencoders

Junbo (Jake) Zhao, Yoon Kim, Kelly Zhang, Alexander M. Rush, Yann LeCun

Wei Zhen Teoh and Mathieu Ravaut

Refresh: Adversarial Autoencoder

[From Adversarial Autoencoders by Makhzani et al 2015]

Some Changes - Learned Generator

Generator distribution is also learned

Some Changes - Wasserstein GAN

• The distance measure between two distributions is defined by the Earth-mover distance, or Wasserstein-1:

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} \left[\|x - y\| \right] ,$$

where $\Pi(\mathbb{P}_r, \mathbb{P}_g)$ denotes the set of all joint distributions $\gamma(x, y)$ whose marginals are respectively \mathbb{P}_r and \mathbb{P}_g .

[From Wasserstein GAN by Arjovsky et al 2017]

Some Changes - Wasserstein GAN

• This is equivalent to the following supremum over Lipschitz-1 functions:

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \sup_{\|f\|_L \le 1} \mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[f(x)]$$

• In practice, f is approximated by a neural network f_w where all the weights are clipped to lie in a compact space such as a hypercube of size epsilon.

Some Changes - Discrete Data

Instead of a continuous vector, X is now discrete data:

- Binarized MNIST

- Text (sequences of one-hot vocabulary vector)

[From

https://ayearofai.com/lenny-2-autoencoders-and-word -embeddings-oh-my-576403b0113a]

Some Changes - Encoder (for sequential data)

Model

Training Objective

Reconstruction loss

Wasserstein distance between two distributions

Training Objective Components

• Reconstruction from decoder:

$$\hat{\mathbf{x}} = \arg \max_{\mathbf{x}} p_{\psi}(\mathbf{x} \mid \mathsf{enc}_{\phi}(\mathbf{x}))$$

• Reconstruction loss:

$$\mathcal{L}_{\rm rec}(\phi,\psi) = -\log p_{\psi}(\mathbf{x} \mid {\rm enc}_{\phi}(\mathbf{x}))$$

Training Objective Components

Discriminator maximizing objective:

$$\mathcal{L}_{cri}(w) = \mathbb{E}_{\mathbf{x} \sim \mathbb{P}_x} \left[f_w(\operatorname{enc}_{\phi}(\mathbf{x})) \right] - \mathbb{E}_{\tilde{\mathbf{c}} \sim \mathbb{P}_g} \left[f_w(\tilde{\mathbf{c}}) \right] \longrightarrow$$

Generator minimizing objective:

$$\mathcal{L}_{\text{encs}}(\phi, \theta) = \mathbb{E}_{\mathbf{x} \sim \mathbb{P}_x} \left[f_w(\text{enc}_{\phi}(\mathbf{x})) \right] - \mathbb{E}_{\tilde{\mathbf{c}} \sim \mathbb{P}_g} \left[f_w(\tilde{\mathbf{c}}) \right]$$

The max of this function approximates the Wasserstein distance

Training

Algorithm 1 ARAE Training

for number of training iterations do (1) Train the autoencoder for reconstruction $[\mathcal{L}_{rec}(\phi, \psi)]$. Sample $\{\mathbf{x}^{(i)}\}_{i=1}^{m} \sim \mathbb{P}_{x}$ and compute code-vectors $\mathbf{c}^{(i)} = \operatorname{enc}_{\phi}(\mathbf{x}^{(i)})$. Backpropagate reconstruction loss, $\mathcal{L}_{rec} = -\frac{1}{m} \sum_{i=1}^{m} \log p_{\psi}(\mathbf{x}^{(i)} | \mathbf{c}^{(i)}, [\mathbf{y}^{(i)}])$, and update.

Training

Algorithm 1 ARAE Training

for number of training iterations do (1) Train the autoencoder for reconstruction $[\mathcal{L}_{rec}(\phi, \psi)]$. Sample $\{\mathbf{x}^{(i)}\}_{i=1}^{m} \sim \mathbb{P}_{x}$ and compute code-vectors $\mathbf{c}^{(i)} = \operatorname{enc}_{\phi}(\mathbf{x}^{(i)})$. Backpropagate reconstruction loss, $\mathcal{L}_{rec} = -\frac{1}{m} \sum_{i=1}^{m} \log p_{\psi}(\mathbf{x}^{(i)} | \mathbf{c}^{(i)}, [\mathbf{y}^{(i)}])$, and update. (2) Train the critic $[\mathcal{L}_{cri}(w)]$ (Repeat k times) Sample $\{\mathbf{x}^{(i)}\}_{i=1}^{m} \sim \mathbb{P}_{x}$ and $\{\mathbf{z}^{(i)}\}_{i=1}^{m} \sim \mathcal{N}(0, \mathbf{I})$. Compute code-vectors $\mathbf{c}^{(i)} = \operatorname{enc}_{\phi}(\mathbf{x}^{(i)})$ and $\tilde{\mathbf{c}}^{(i)} = g_{\theta}(\mathbf{z}^{(i)})$. Backpropagate loss $-\frac{1}{m} \sum_{i=1}^{m} f_{w}(\mathbf{c}^{(i)}) + \frac{1}{m} \sum_{i=1}^{m} f_{w}(\tilde{\mathbf{c}}^{(i)})$, update, clip the critic w to $[-\epsilon, \epsilon]^{d}$.

Training

Algorithm 1 ARAE Training

for number of training iterations do (1) Train the autoencoder for reconstruction $[\mathcal{L}_{rec}(\phi, \psi)]$. Sample $\{\mathbf{x}^{(i)}\}_{i=1}^m \sim \mathbb{P}_x$ and compute code-vectors $\mathbf{c}^{(i)} = \operatorname{enc}_{\phi}(\mathbf{x}^{(i)})$. Backpropagate reconstruction loss, $\mathcal{L}_{rec} = -\frac{1}{m} \sum_{i=1}^{m} \log p_{\psi}(\mathbf{x}^{(i)} | \mathbf{c}^{(i)}, [\mathbf{y}^{(i)}])$, and update. (2) Train the critic $[\mathcal{L}_{cri}(w)]$ (Repeat k times) Sample $\{\mathbf{x}^{(i)}\}_{i=1}^m \sim \mathbb{P}_x$ and $\{\mathbf{z}^{(i)}\}_{i=1}^m \sim \mathcal{N}(0, \mathbf{I})$. Compute code-vectors $\mathbf{c}^{(i)} = \operatorname{enc}_{\phi}(\mathbf{x}^{(i)})$ and $\tilde{\mathbf{c}}^{(i)} = g_{\theta}(\mathbf{z}^{(i)})$. Backpropagate loss $-\frac{1}{m}\sum_{i=1}^{m} f_w(\mathbf{c}^{(i)}) + \frac{1}{m}\sum_{i=1}^{m} f_w(\tilde{\mathbf{c}}^{(i)})$, update, clip the critic w to $[-\epsilon,\epsilon]^d$. (3) Train the generator and encoder adversarially to critic $[\mathcal{L}_{encs}(\phi, \theta)]$ Sample $\{\mathbf{x}^{(i)}\}_{i=1}^m \sim \mathbb{P}_x$ and $\{\mathbf{z}^{(i)}\}_{i=1}^m \sim \mathcal{N}(0, \mathbf{I})$ Compute code-vectors $\mathbf{c}^{(i)} = \operatorname{enc}_{\phi}(\mathbf{x}^{(i)})$ and $\tilde{\mathbf{c}}^{(i)} = q_{\theta}(\mathbf{z}^{(i)})$. Backpropagate adversarial loss $\frac{1}{m} \sum_{i=1}^{m} f_w(\mathbf{c}^{(i)}) - \frac{1}{m} \sum_{i=1}^{m} f_w(\tilde{\mathbf{c}}^{(i)})$ and update.

Extension: Code Space Transfer

Unaligned transfer for text:

Can we change an attribute (e.g. sentiment) of the text without changing the content using this autoencoder?

Example:

Original	it has a great atmosphere, with wonderful service.
ARAE	it has no taste, with a complete jerk.

Extension: Code Space Transfer

• Extend decoder to condition on a transfer variable y to learn $p_{\psi}(\mathbf{x} \mid \mathbf{c}, y)$

Extension: Code Space Transfer

• Train the encoder adversarially against a classifier so that the code space is invariant to attribute y

Additional Training

Algorithm 2 ARAE Transfer Extension

[Each loop additionally:] (2b) Train the code classifier $[\min_u \mathcal{L}_{class}(\phi, u)]$ Sample $\{\mathbf{x}^{(i)}\}_{i=1}^m \sim \mathbb{P}_x$, lookup $y^{(i)}$, and compute code-vectors $\mathbf{c}^{(i)} = \operatorname{enc}_{\phi}(\mathbf{x}^{(i)})$. Backpropagate loss $-\frac{1}{m} \sum_{i=1}^m \log p_u(y^{(i)} | \mathbf{c}^{(i)})$, update. (3b) Train the encoder adversarially to code classifier $[\max_{\phi} \mathcal{L}_{class}(\phi, u)]$ Sample $\{\mathbf{x}^{(i)}\}_{i=1}^m \sim \mathbb{P}_x$, lookup $y^{(i)}$, and compute code-vectors $\mathbf{c}^{(i)} = \operatorname{enc}_{\phi}(\mathbf{x}^{(i)})$. Backpropagate adversarial classifier $\log -\frac{1}{m} \sum_{i=1}^m \log p_u(1 - y^{(i)} | \mathbf{c}^{(i)})$, update.

Image model

[From Adversarially Regularized Autoencoders by Zhao et al, 2017]

Input images are **binarized MNIST**, but normal MNIST would work as well.

Text model

[Partly from https://blog.statsbot.co/time-series-prediction-using-recurrent-neural-networks-lstms-807fa6ca7f]

Same generator architecture

Text transfer model

Same generator architecture

Checkpoint 1:

How does the norm of c' behave over training?

[From Adversarially Regularized Autoencoders by Zhao et al, 2017]

c' L2 norm matching c L2 norm

Checkpoint 2:

How does the encoding space behave? Is it noisy?

c' and c sum of dimension-wise variance matching over time

Checkpoint 3:

Choose one sentence, then 100 other sentences within an edit-distance inferior to 5

Average **cosine similarity** in latent space. Maps similar input to nearby code.

Checkpoint 4:

Swap k words from an original sentence.

k	AE	ARAE	Original	A woman wearing sunglasses .	Original	They have been swimming .
0	1.06	2.19	Noised AE	A woman sunglasses wearing . A woman sunglasses wearing sunglasses .	Noised AE	been have They swimming . been have been swimming .
1	4.51	4.07	ARAE	A woman wearing sunglasses .	ARAE	Children have been swimming.
2	6.61	5.39	Original	Pets galloping down the street.	Original	The child is sleeping.
3	9.14	6.86	Noised	Pets down the galloping street .	Noised	child The is sleeping .
4	9.97	7.47	AE ARAE	Pets riding the down galloping . Pets congregate down the street near a ravine .	AE ARAE	The child is sleeping is . The child is sleeping .

[From Adversarially Regularized Autoencoders by Zhao et al, 2017]

Left: reconstruction error (NLL). *Right*: reconstruction examples.

Experiment #2: unaligned text transfer

[Partly from https://blog.statsbot.co/time-series-prediction-using-recurrent-neural-networks-lstms-807fa6ca7f]

Remove sentiment information from the latent space:

- At training time: adversarial training.
- At test time: pass sentences of one class, decode with the decoder from the other class

Experiment #2: unaligned text transfer

Results:

	Automatic Evaluation				Human Evaluation			
Model	Transfer	BLEU	PPL	Reverse PPL	Transfer	Similarity	Naturalness	
Cross-Aligned AE	77.1%	17.75	65.9	124.2	57%	3.8	2.7	
AE	59.3%	37.28	31.9	68.9	-	1.7.1	270	
ARAE, $\lambda_a^{(1)}$	73.4%	31.15	29.7	70.1			27.00	
ARAE, $\lambda_b^{(1)}$	81.8%	20.18	27.7	77.0	74%	3.7	3.8	

	Positive \Rightarrow Negative		Negative \Rightarrow Positive	
ARAE Cross-AE	great indoor mall. no smoking mall. terrible outdoor urine.	ARAE Cross-AE	hell no ! hell great ! incredible pork !	

• Better transfer

[From Adversarially Regularized Autoencoders by Zhao et al, 2017]

- Better perplexity
- Transferred text less similar to original text

Experiment #3: semi-supervised classification

SNLI dataset:

- o 570k human-written English sentence pairs
- o 3 classes: entailment, contradiction, neutral

Model	Medium	Small	Tiny
Supervised Encoder	65.9%	62.5%	57.9%
Semi-Supervised AE	68.5%	64.6%	59.9%
Semi-Supervised ARAE	70.9%	66.8%	62.5%

Medium: 22.% of labels Small: 10.8% of labels Tiny: 5.25% of labels

[From Adversarially Regularized Autoencoders by Zhao et al, 2017]

Playground: latent space interpolation

Results:

A man is on the corner in a sport area. A man is on corner in a road all. A lady is on outside a racetrack. A lady is outside on a racetrack. A lot of people is outdoors in an urban setting. A lot of people is outdoors in an urban setting. A lot of people is outdoors in an urban setting. A man is on a ship path with the woman. A man is on a ship path with the woman. A man is passing on a bridge with the girl. A man is passing on a bridge with the girl. A man is passing on a bridge with the girl. A man is passing on a bridge with the dogs. A man is passing on a bridge with the dogs.

A man in a cave is used an escalator.	Z_1
A man in a cave is used an escalator A man in a cave is used chairs. A man in a number is used many equipment A man in a number is posing so on a big rock.	Z_{α}
People are posing in a rural area. People are posing in a rural area.	Z_2

[From Adversarially Regularized Autoencoders by Zhao et al, 2017]

Conclusion about Adversarially Regularized AEs

Pros:

- ✓ Better discrete autoencoder
 - Semi-supervision
 - Text transfer
- Different approach to text generation
- ✓ Robust latent space

Cons:

- Sensitive to hyperparameters (GANs...)
- ✤ Unclear why WGAN
- Not so much novelty compared to Adversarial Auto Encoders (AAE)
- Discrete data but no discrete latent structure :/