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Refresh: Adversarial Autoencoder
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[From Adversarial Autoencoders by Makhzani et al 2015]



Some Changes - Learned Generator
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Some Changes - Wasserstein GAN

e The distance measure between two distributions is defined by the
Earth-mover distance, or Wasserstein-1:

W(P,,P,) = inf Eq)~ — :
(B, B)=__inf  Eyms[llz—ll]

where II(IP,., ;) denotes the set of all joint distributions v(z, y) whose marginals
are respectively P, and P,. |

[From Wasserstein GAN by Arjovsky et al 2017]



Some Changes - Wasserstein GAN

e This is equivalent to the following supremum over Lipschitz-1 functions:

W(P,,Pg) = By Eznp, [f(2)] — Exnr, [f(2)]

e In practice, fis approximated by a neural network f where all the weights
are clipped to lie in a compact space such as a hypercube of size epsilon.



Some Changes - Discrete Data

Instead of a continuous vector, X is now discrete data:

- Binarized MNIST

- Text (sequences of one-hot vocabulary vector)

a” “abbreviations” “zoology” “zoom”

1 ) o 0

) [1 ) 1

0 0 0 ry

) ) ) )
0 o 1 0 [From

0 0 0 1 https://ayearofai.com/lenny-2-autoencoders-and-word

-embeddings-oh-my-576403b0113a]



Some Changes - Encoder (for sequential data)

> ¢ (P)

hn becomes the latent code ¢

[From https://mlalgorithm.wordpress.com/2016/08/04/deep-learning-part-2-recurrent-neural-networks-rnn/]



Model
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Training Objective
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Training Objective Components

e Reconstruction from decoder:

X = arg maxy Py (x | encg(x))

e Reconstruction loss:

Lrec(¢,¥) = —log py (x | ency(x))
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Training Objective Components

Discriminator maximizing objective:

15 The max of this function
Loi(w) = Ex~p, [fw(ence(x))] — Ezp, [fw(€)] — approximates the

. . Wasserstein distance
Generator minimizing objective:

Eencs(¢a ‘9) — ]EXNIPI [fw(encd>(x))] CNIP’ [fw( )]
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Training

Algorithm 1 ARAE Training

for number of training iterations do
(1) Train the autoencoder for reconstruction [L..(¢,)].

Sample {x(¥}™, ~ PP, and compute code-vectors ¢} = encg(x(?).
Backpropagate reconstruction loss, Lrec = — % Y 1 Jogpy (x(i) |c(i), [y(i)]), and update.
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Training

Algorithm 1 ARAE Training

for number of training iterations do
(1) Train the autoencoder for reconstruction [L..(¢,)].

Sample {x(¥}™, ~ PP, and compute code-vectors ¢} = encg(x(?).
Backpropagate reconstruction loss, Lree = —— >~ log py (xD |c@ [y¥]), and update.
(2) Train the critic [L.i(w)] (Repeat k times)
Sample {x(V}™, ~ P, and {z¥}™, ~ N(0,I).
Compute code-vectors ¢ = encg(x(?) and ¢ = go(2zV).
Backpropagate loss —= S fi,(c®)+ L "7 £, (€1), update, clip the critic w to [—e, €],
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Training

Algorithm 1 ARAE Training

for number of training iterations do
(1) Train the autoencoder for reconstruction [L.(¢,)].

Sample {x(¥}™, ~ PP, and compute code-vectors ¢} = encg(x(?).

Backpropagate reconstruction loss, Lree = —— >~ log py (xD |c@ [y¥]), and update.
(2) Train the critic [L.i(w)] (Repeat k times)

Sample {x(V}™, ~ P, and {z¥}™, ~ N(0,I).

Compute code-vectors ¢ = ency(x¥) and &9 = gy (2?).

Backpropagate loss —= S fi,(c®)+ L "7 £, (€1), update, clip the critic w to [—e, €],
(3) Train the generator and encoder adversarially to critic [ Lens(p,0)]

Sample {xV}7; ~ P, and {zV}7; ~ N(0,1)

Compute code-vectors ¢() = ency(x(?) and &V = gy(z).

Backpropagate adversarial loss — > fw(c®) — =y fuw(€¢) and update.
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Extension: Code Space Transfer

Unaligned transfer for text:

Can we change an attribute (e.g. sentiment) of the text without
changing the content using this autoencoder?

Example:

Original it has a great atmosphere , with wonderful service .

ARAE it has no taste , with a complete jerk .
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Extension: Code Space Transfer

e Extend decoder to condition on a transfer variable ’U to learn pw(x | c,y)

sentiment attribute
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Extension: Code Space Transfer

e Train the encoder adversarially against a classifier so that the code
space is invariant to attribute Y

Classifier: pu, (y(i) |C(i))

en(tq)

{x(i)}ﬁvl ~ Py " c
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Additional Training

Algorithm 2 ARAE Transfer Extension

[Each loop additionally:]
(2b) Train the code classifier [min, L (@, u)]

Sample {x(V}™, ~ P,, lookup ¥, and compute code-vectors ¢} = ency(x(").
Backpropagate loss —-L >°™  log p.(y‘”|c(?), update.

(3b) Train the encoder adversarially to code classifier [max g Leiass (0, u)]
Sample {x(V}™, ~ P, lookup ¥, and compute code-vectors ¢} = encg(x(").
Backpropagate adversarial classifier loss — = > log p. (1 — y@D | ¢), update.

m
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Image model

[From Adversarially Regularized Autoencoders by Zhao et al, 2017]
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In all experiments:

v g € S0,
go: MLP £, : MLP - (_( 5 1%

Input images are binarized MNIST, but normal MNIST
would work as well.
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Text model

[Partly from https://blog.statsbot.co/time-series-prediction-using-recurrent-neural-networks-Istms-807fa6ca7f]
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Text transfer model

g% %g class
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Experiment #1: effects of regularizing with WGAN

Checkpoint 1:
How does the norm of ¢’ behave over training?
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= = ARAE P_g Autoencoders by Zhao et al, 2017]
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Experiment #1: effects of regularizing with WGAN

Checkpoint 2:
How does the encoding space behave? Is it noisy?
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[From Adversarially Regularized
0.2 Autoencoders by Zhao et al, 2017]
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¢’ and ¢ sum of dimension-wise variance matching over time
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Experiment #1: effects of regularizing with WGAN

Checkpoint 3:
Choose one sentence, then 100 other sentences within an
edit-distance inferior to 5

1

W aassne
0.8 o= AE

0.6 / ~s~ ARAE P_r
< [From Adversarially Regularized
4 ——

- = - *  Autoencoders by Zhao et al, 2017]

Cosine Distance

0.2
% a4 & 8 10 12

#Epoch
Average cosine similarity in latent space.

Maps similar input to nearby code.
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Experiment #1: effects of regularizing with WGAN

Checkpoint 4.
Swap k words from an original sentence.

k AE ARAE Original A woman wearing sunglasses . Original They have been swimming .
Noised A woman sunglasses wearing . Noised been have They swimming .
| 0 1.06 2.19 | AE A woman sunglasses wearing sunglasses . AE been have been swimming .
1 4.51 4.07 ARAE A woman wearing sunglasses . ARAE Children have been swimming .
2 6.61 5.39 Original Pets galloping down the street . Original ~ The child is sleeping .
3 0.14 6.86 Noised Pets down the galloping street . Noised child The is sleeping .
@ ; : AE Pets riding the down galloping . AE The child is sleeping is.
4 9.97 1.47 ARAE Pets congregate down the street near a ravine . ARAE The child is sleeping .

[From Adversarially Regularized Autoencoders by Zhao et al, 2017]

Left: reconstruction error (NLL). Right: reconstruction examples.
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Experiment #2: unaligned text transfer
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[Partly from https://blog.statsbot.co/time-series-prediction-using-recurrent-neural-networks-lstms-807fa6ca7f]

Remove sentiment information from the latent space:

At training time: adversarial training.

At test time: pass sentences of one class, decode with the
decoder from the other class
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Experiment #2: unaligned text transfer

Results:
Automatic Evaluation Human Evaluation
Model Transfer BLEU PPL Reverse PPL  Transfer Similarity  Naturalness
Cross-Aligned AE 77.1% 1775 65.9 124.2 57% 3.8 2.7
AE | 59.3% 37.28 31.9 68.9 - - -
ARAE, )"/ 734% 3115 297 70.1 - - -
ARAE, \;" 81.8%  20.18 27.7 77.0 74% 3.7 3.8
Positive = Negative Negative =- Positive
great indoor mall . hell no !
ARAE no smoking mall . ARAE hell great !
Cross-AE terrible outdoor urine . Cross-AE incredible pork !

» Better transfer [From Adversarially Regularized Autoencoders by Zhao et al, 2017]

» Better perplexity
» Transferred text less similar to original text 27



Experiment #3. semi-supervised classification

SNLI| dataset:
o 570k human-written English sentence pairs
o 3 classes: entailment, contradiction, neutral

Model Medium  Small Tiny Medium: 22.% of labels
Supervised Encoder 65.9%  62.5% 57.9% Small: 10.8% of labels
Semi-Supervised AE 08.5%  64.6% 39.9%  Tiny: 5.25% of labels

Semi-Supervised ARAE ~ 70.9% 66.8% 62.5%

[From Adversarially Regularized Autoencoders by Zhao et al, 2017]
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Playground: latent space interpolation

|dea:

GAN input: Sample 2 elements] | For a € [0,1]: Feed to the generator:

=
z EN(0,I) Z1,2Z, ~p(2) Zg = a.z3 +(1 — a)z, Zyg = G =—p D =—p?

Results:

A man is on the corner in a sport area . A man is on a ship path with the woman . A man in a cave is used an escalator . Z
A man is on comer in a road all A man is on a ship path with the woman

A lady is on outside a racetrack A man is passing on a bridge with the girl A man in a cave is used an escalator

A lady is outside on a racetrack A man is passing on a bridge with the girl A man in a cave is used chairs

A lot of people is outdoors in an urban set- A man is passing on a bridge with the girl A man in a number is used many equipment Zy
ting A man is passing on a bridge with the dogs A man in a number is posing so on a big

A lot of people is outdoors in an urban set- A man is passing on a bridge with the dogs . rock

ting People are posing in a rural area

A lot of people is outdoors in an urban set- People are posing in a rural area. Z5
ting .

[From Adversarially Regularized Autoencoders by Zhao et al, 2017] 29



Conclusion about Adversarially Regularized AEs

Pros:

v

Better discrete
autoencoder
- Semi-supervision
- Text transfer

Different approach to
text generation

Robust latent space

Cons:

7
%*

Sensitive to hyperparameters
(GANs...)

Unclear why WGAN

Not so much novelty
compared to Adversarial Auto
Encoders (AAE)

Discrete data but no discrete
latent structure :/
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