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Why should we care about model architecture?
● Impressive gains have followed from improvements to model architecture
● LSTMs: gated connections replace traditional RNN
● Residual networks: ~25% relative improvement on ImageNet

Hochreiter & Schmidhuber, 1997 He et al., 2015
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Architecture Search
● Desirable to efficiently search through architecture space
● Common method of searching: grad student descent



Neural Architecture Search (NAS)

Zoph & Le, 2015



Flaw of NAS
● Wasteful to optimize model parameters from scratch each time
● Applications of NAS “use 450 GPUs for 3-4 days”



Efficient NAS (ENAS)
● Main Ideas:

○ Share parameters among models in the search space
○ Alternate between optimizing model parameters on the training set and 

controller parameters on the validation set



Efficient NAS (ENAS)
● Main Ideas:

○ Share parameters among models in the search space
○ Alternate between optimizing model parameters on the training set and 

controller parameters on the validation set
● Set-up: Start with a fully connected DAG specifying a computational graph
● Controller decides active connections in DAG (and a few other things)
● Parameters of transformations between nodes are shared



Simple Example of ENAS
● Consider 1-D neural network regression
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Simple Example of ENAS
● Consider 1-D neural network regression

● Goal: Find whether φ = tanh or ReLU and whether or not to connect x and z
○ Make decision based on validation performance
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Simple Example of ENAS
● Define a distribution over model architectures m with “controller” parameters Ө 
● Our example: Ө = {Ө1,Ө2,Ө,3Ө4}

○ Pr(φ = tanh & x, z connected) = Ө1
○ Pr(φ = tanh & x, z disconnected) = Ө2
○ Pr(φ = ReLU & x, z disconnected) = Ө3
○ Pr(φ = ReLU & x, z disconnected) = Ө4



Simple Example of ENAS
● Define a distribution over model architectures m with “controller” parameters Ө 
● Our example: Ө = {Ө1,Ө2,Ө,3Ө4}

○ Pr(φ = tanh & x, z connected) = Ө1
○ Pr(φ = tanh & x, z disconnected) = Ө2
○ Pr(φ = ReLU & x, z disconnected) = Ө3
○ Pr(φ = ReLU & x, z disconnected) = Ө4

● Model parameters: w = {wxy,wyz,wxz}



Simple Example of ENAS
● Training procedure: 

○ Optimize w to minimize Em ~p(m|θ)[L(m; w)] on the training set
○ Optimize Ө to maximize Em ~p(m|θ)[R(m; w)] on the validation set
○ Repeat!
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Simple Example of ENAS
● Optimize w to minimize Em ~p(m|θ)[L(m; w)] on the training set

∇wEm ~p(m|θ)[L(m; w)]=Em ~p(m|θ)[∇wL(m; w)]

○ Sample a model m from p(m|θ)
○ Compute ∇wL(m; w) on the training set using regular backprop & update 

w



Simple Example of ENAS
● Optimize Ө to maximize Em ~p(m|θ)[R(m; w)] on the validation set

∇θEm ~p(m|θ)[R(m; w)] = Em ~p(m|θ)[R(m; w) ∇θlog p(m|θ)]



Simple Example of ENAS
● Optimize Ө to minimize Em ~p(m|θ)[R(m; w)] on the validation set

∇θEm ~p(m|θ)[R(m; w)] = Em ~p(m|θ)[R(m; w) ∇θlog p(m|θ)]

○ Sample a model m from p(m|θ)
○ Compute validation accuracy R(m; w) 
○ Use REINFORCE estimator R(m; w) ∇θlog p(m|θ) to update θ



Simple Example of ENAS
● Example: Sample that φ=tanh and x, z not connected 

○ Update wxy  and wyz by gradient descent on the training set
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Simple Example of ENAS
● Example: Sample that φ=ReLU and x, z connected

○ Update Ө using gradient descent on the validation set 

x y z

wxy wyz

wxz

y = ReLU(wxyx )
z = wyzy + wxzx

ReLU



Key assumption of ENAS
● Parameters that work well for one model architecture should work well for 

others



ENAS for Recurrent Cell
● Given {x(t), h(t-1)}, how should h(t) be computed?
● Start with N nodes in computation graph: h1, h2, …, hN
● Controller is LSTM which operates for N steps



ENAS for Recurrent Cell
● At step i, controller decides:

○ Which previous node j∊{1, …, i-1} to connect to node i 
○ An activation function φi∊ {tanh, ReLU, Id, σ}

● Then:

hi=φi(Wijhj)

● h(t) is set to average of nodes which are not used as input to another node



ENAS for Recurrent Cell Example
● Controller selects:
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ENAS for Recurrent Cell Example
● Controller selects:

○ Step 1: tanh
○ Step 2: 1, ReLU
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● Function computed:
○ h1 = tanh(Wxx

(t) + Whh
(t-1))

○ h2 = ReLU(W12h1)



ENAS for Recurrent Cell Example
● Controller selects:

○ Step 1: tanh
○ Step 2: 1, ReLU
○ Step 3: 2, ReLU
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● Function computed:
○ h1 = tanh(Wxx

(t) + Whh
(t-1))

○ h2 = ReLU(W12h1)
○ h3 = ReLU(W23h2)

ReLU



ENAS for Recurrent Cell Example
● Controller selects:

○ Step 1: tanh
○ Step 2: 1, ReLU
○ Step 3: 2, ReLU
○ Step 4: 1, tanhh1
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○ h2 = ReLU(W12h1)
○ h3 = ReLU(W23h2)
○ h4 = tanh(W14h1)
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ENAS for Recurrent Cell Example
● Controller selects:

○ Step 1: tanh
○ Step 2: 1, ReLU
○ Step 3: 2, ReLU
○ Step 4: 1, tanhh1

h2 h3

h4

tanh

ReLU

● Function computed:
○ h1 = tanh(Wxx

(t) + Whh
(t-1))

○ h2 = ReLU(W12h1)
○ h3 = ReLU(W23h2)
○ h4 = tanh(W14h1)
○ h(t) = ½ (h3 + h4)

ReLU

tanh



ENAS for Convolutional Networks
● At step i, controller decides:

○ Which previous node j∊{1, …, i-1} to connect to node i 
○ Which computation operation to use 

gi∊ {conv3x3, conv5x5, sepconv3x3, sepconv5x5, maxpool3x3, avgpool3x3} 

● Then:

hi=concat(gi(hi-1), hj) for all selected j



ENAS for Convolutional Networks
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ENAS for Convolutional Networks
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ENAS for Convolutional Networks
● Search space is huge - with 12 layers, 1.6 x 1029 possible networks.



ENAS for Convolutional Cells
● Represents local computations inside a cell



ENAS for Convolutional Cells
● Represents local computations inside a cell
● At step i, controller decides:

○ Which two previous node j∊{1, …, i-1} to connect to node i 
○ Which computation operations to use for the two selected nodes 

gij∊ {identity, sepconv3x3, sepconv5x5, maxpool3x3, avgpool3x3} 

● Then:

hi=∑(gij(hj)) for the two selected j

● (+ reduction cell where strides are 2)



ENAS for Convolutional Cells
● Search space - with 7 nodes, 1.3 x 1011 configurations.



Deriving novel architectures from ENAS 
● Sample several architectures from a trained ENAS model
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Deriving novel architectures from ENAS 
● Sample several architectures from a trained ENAS model

● Compute their reward on a single minibatch from the validation set 

● Take one with the highest reward and re-train from scratch.



Experiments - Penn Treebank

Maybe there is a flaw in the photo industry itself? Is today's model of licensing and sales 
of photographs viable? How best to sell your photos? Will open resources photo stocks 
increase supply growth up until the number of pictures will not reach a level where 
photographers could not even very cheap to sell good photos and make money on those 
that sell? Theoretically, this horrible scenario is likely to become reality. Already Shutter 
stock alone offers more than 5 million photographs, which do not require payment of 
royalties, and, as stated CEO John Orangey, each month the number of new revenue in the 
millions. Number of images in the bank Dreamtime also exceeded 5 million. Due to the 
fact that the old photos - sold or not - remain in their bases, photo stock will continue to 
grow indefinitely. Since the proposal ahead of demand - in the world has always been 
more pictures than buyers - prices will become lower and lower. 

Image source: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



Experiments - Penn Treebank



Experiments - Penn Treebank

● All non-linearities are either ReLU 
or tanh

● Similar to Mixture-of-Contexts 
architecture

● Local optimum 
○ Changing one non-linearity leads to 

significant drop in performance



Experiments - Penn Treebank

● All non-linearities are either ReLU 
or tanh

● Similar to Mixture-of-Contexts 
architecture

● Local optimum 
○ Changing one non-linearity leads to 

significant drop in performance
● 10 hours with single GPU (1000x faster than 

NAS!)



Experiments - Penn Treebank



Experiments - CIFAR10

Image source: https://www.cs.toronto.edu/~kriz/cifar.html



Experiments - CIFAR10



Experiments - CIFAR10



Experiments - CIFAR10



Conclusion
● ENAS speeds up NAS by more than 1000x in terms of GPU hours.

● This is done by sharing of parameters across child models during the search.

● Showed ENAS works well on both Penn Treebank and CIFAR10.


