
Efficient Neural Architecture
Search via Parameter Sharing
Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, Jeff
Dean

Presented by: Seung Wook Kim and Matthew MacKay

Why should we care about model architecture?
● Impressive gains have followed from improvements to model architecture

Why should we care about model architecture?
● Impressive gains have followed from improvements to model architecture
● LSTMs: gated connections replace traditional RNN

Hochreiter & Schmidhuber, 1997

Why should we care about model architecture?
● Impressive gains have followed from improvements to model architecture
● LSTMs: gated connections replace traditional RNN
● Residual networks: ~25% relative improvement on ImageNet

Hochreiter & Schmidhuber, 1997 He et al., 2015

Architecture Search
● Desirable to efficiently search through architecture space

Architecture Search
● Desirable to efficiently search through architecture space
● Common method of searching: grad student descent

Neural Architecture Search (NAS)

Zoph & Le, 2015

Flaw of NAS
● Wasteful to optimize model parameters from scratch each time
● Applications of NAS “use 450 GPUs for 3-4 days”

Efficient NAS (ENAS)
● Main Ideas:

○ Share parameters among models in the search space
○ Alternate between optimizing model parameters on the training set and

controller parameters on the validation set

Efficient NAS (ENAS)
● Main Ideas:

○ Share parameters among models in the search space
○ Alternate between optimizing model parameters on the training set and

controller parameters on the validation set
● Set-up: Start with a fully connected DAG specifying a computational graph
● Controller decides active connections in DAG (and a few other things)
● Parameters of transformations between nodes are shared

Simple Example of ENAS
● Consider 1-D neural network regression

x
y
φ z

wxy wyz

wxz

y = φ(wxyx)
z = wyzy + wxzx

Simple Example of ENAS
● Consider 1-D neural network regression

● Goal: Find whether φ = tanh or ReLU and whether or not to connect x and z
○ Make decision based on validation performance

x
y
φ z

wxy wyz

wxz

y = φ(wxyx)
z = wyzy + wxzx

Simple Example of ENAS
● Define a distribution over model architectures m with “controller” parameters Ө
● Our example: Ө = {Ө1,Ө2,Ө,3Ө4}

○ Pr(φ = tanh & x, z connected) = Ө1
○ Pr(φ = tanh & x, z disconnected) = Ө2
○ Pr(φ = ReLU & x, z disconnected) = Ө3
○ Pr(φ = ReLU & x, z disconnected) = Ө4

Simple Example of ENAS
● Define a distribution over model architectures m with “controller” parameters Ө
● Our example: Ө = {Ө1,Ө2,Ө,3Ө4}

○ Pr(φ = tanh & x, z connected) = Ө1
○ Pr(φ = tanh & x, z disconnected) = Ө2
○ Pr(φ = ReLU & x, z disconnected) = Ө3
○ Pr(φ = ReLU & x, z disconnected) = Ө4

● Model parameters: w = {wxy,wyz,wxz}

Simple Example of ENAS
● Training procedure:

○ Optimize w to minimize Em ~p(m|θ)[L(m; w)] on the training set
○ Optimize Ө to maximize Em ~p(m|θ)[R(m; w)] on the validation set
○ Repeat!

Simple Example of ENAS
● Optimize w to minimize Em ~p(m|θ)[L(m; w)] on the training set

∇wEm ~p(m|θ)[L(m; w)]=Em ~p(m|θ)[∇wL(m; w)]

Simple Example of ENAS
● Optimize w to minimize Em ~p(m|θ)[L(m; w)] on the training set

∇wEm ~p(m|θ)[L(m; w)]=Em ~p(m|θ)[∇wL(m; w)]

○ Sample a model m from p(m|θ)
○ Compute ∇wL(m; w) on the training set using regular backprop & update

w

Simple Example of ENAS
● Optimize Ө to maximize Em ~p(m|θ)[R(m; w)] on the validation set

∇θEm ~p(m|θ)[R(m; w)] = Em ~p(m|θ)[R(m; w) ∇θlog p(m|θ)]

Simple Example of ENAS
● Optimize Ө to minimize Em ~p(m|θ)[R(m; w)] on the validation set

∇θEm ~p(m|θ)[R(m; w)] = Em ~p(m|θ)[R(m; w) ∇θlog p(m|θ)]

○ Sample a model m from p(m|θ)
○ Compute validation accuracy R(m; w)
○ Use REINFORCE estimator R(m; w) ∇θlog p(m|θ) to update θ

Simple Example of ENAS
● Example: Sample that φ=tanh and x, z not connected

○ Update wxy and wyz by gradient descent on the training set

x y z

wxy wyz

y = tanh(wxyx)
z = wyzytanh

Simple Example of ENAS
● Example: Sample that φ=ReLU and x, z connected

○ Update Ө using gradient descent on the validation set

x y z

wxy wyz

wxz

y = ReLU(wxyx)
z = wyzy + wxzx

ReLU

Key assumption of ENAS
● Parameters that work well for one model architecture should work well for

others

ENAS for Recurrent Cell
● Given {x(t), h(t-1)}, how should h(t) be computed?
● Start with N nodes in computation graph: h1, h2, …, hN
● Controller is LSTM which operates for N steps

ENAS for Recurrent Cell
● At step i, controller decides:

○ Which previous node j∊{1, …, i-1} to connect to node i
○ An activation function φi∊ {tanh, ReLU, Id, σ}

● Then:

hi=φi(Wijhj)

● h(t) is set to average of nodes which are not used as input to another node

ENAS for Recurrent Cell Example
● Controller selects:

h1

h2 h3

h4

● Function computed:

ENAS for Recurrent Cell Example
● Controller selects:

○ Step 1: tanh

h1

h2 h3

h4

tanh

● Function computed:
○ h1 = tanh(Wxx

(t) + Whh
(t-1))

ENAS for Recurrent Cell Example
● Controller selects:

○ Step 1: tanh
○ Step 2: 1, ReLU

h1

h2 h3

h4

tanh

ReLU

● Function computed:
○ h1 = tanh(Wxx

(t) + Whh
(t-1))

○ h2 = ReLU(W12h1)

ENAS for Recurrent Cell Example
● Controller selects:

○ Step 1: tanh
○ Step 2: 1, ReLU
○ Step 3: 2, ReLU

h1

h2 h3

h4

tanh

ReLU

● Function computed:
○ h1 = tanh(Wxx

(t) + Whh
(t-1))

○ h2 = ReLU(W12h1)
○ h3 = ReLU(W23h2)

ReLU

ENAS for Recurrent Cell Example
● Controller selects:

○ Step 1: tanh
○ Step 2: 1, ReLU
○ Step 3: 2, ReLU
○ Step 4: 1, tanhh1

h2 h3

h4

tanh

ReLU

● Function computed:
○ h1 = tanh(Wxx

(t) + Whh
(t-1))

○ h2 = ReLU(W12h1)
○ h3 = ReLU(W23h2)
○ h4 = tanh(W14h1)

ReLU

tanh

ENAS for Recurrent Cell Example
● Controller selects:

○ Step 1: tanh
○ Step 2: 1, ReLU
○ Step 3: 2, ReLU
○ Step 4: 1, tanhh1

h2 h3

h4

tanh

ReLU

● Function computed:
○ h1 = tanh(Wxx

(t) + Whh
(t-1))

○ h2 = ReLU(W12h1)
○ h3 = ReLU(W23h2)
○ h4 = tanh(W14h1)
○ h(t) = ½ (h3 + h4)

ReLU

tanh

ENAS for Convolutional Networks
● At step i, controller decides:

○ Which previous node j∊{1, …, i-1} to connect to node i
○ Which computation operation to use

gi∊ {conv3x3, conv5x5, sepconv3x3, sepconv5x5, maxpool3x3, avgpool3x3}

● Then:

hi=concat(gi(hi-1), hj) for all selected j

ENAS for Convolutional Networks

2

1

3
Input

ENAS for Convolutional Networks
Conv
3x3

Node 1

2

1

3
Input Conv

3x3

ENAS for Convolutional Networks
Conv
3x3

Node 1

2

1

3
Input Conv

3x3

1

Node 2

1Conv
3x3

Max
Pool
3x3

Max
Pool
3x3

CAT

ENAS for Convolutional Networks
Conv
3x3

Node 1

2

1

3
Input Conv

3x3

1

Node 2

1Conv
3x3

Max
Pool
3x3

Max
Pool
3x3

Max
Pool
3x3

CAT

1,2

1,2

Conv
5x5

Conv
3x3

CAT

Node 3

ENAS for Convolutional Networks
● Search space is huge - with 12 layers, 1.6 x 1029 possible networks.

ENAS for Convolutional Cells
● Represents local computations inside a cell

ENAS for Convolutional Cells
● Represents local computations inside a cell
● At step i, controller decides:

○ Which two previous node j∊{1, …, i-1} to connect to node i
○ Which computation operations to use for the two selected nodes

gij∊ {identity, sepconv3x3, sepconv5x5, maxpool3x3, avgpool3x3}

● Then:

hi=∑(gij(hj)) for the two selected j

● (+ reduction cell where strides are 2)

ENAS for Convolutional Cells
● Search space - with 7 nodes, 1.3 x 1011 configurations.

Deriving novel architectures from ENAS
● Sample several architectures from a trained ENAS model

Deriving novel architectures from ENAS
● Sample several architectures from a trained ENAS model

● Compute their reward on a single minibatch from the validation set

Deriving novel architectures from ENAS
● Sample several architectures from a trained ENAS model

● Compute their reward on a single minibatch from the validation set

● Take one with the highest reward and re-train from scratch.

Experiments - Penn Treebank

Maybe there is a flaw in the photo industry itself? Is today's model of licensing and sales
of photographs viable? How best to sell your photos? Will open resources photo stocks
increase supply growth up until the number of pictures will not reach a level where
photographers could not even very cheap to sell good photos and make money on those
that sell? Theoretically, this horrible scenario is likely to become reality. Already Shutter
stock alone offers more than 5 million photographs, which do not require payment of
royalties, and, as stated CEO John Orangey, each month the number of new revenue in the
millions. Number of images in the bank Dreamtime also exceeded 5 million. Due to the
fact that the old photos - sold or not - remain in their bases, photo stock will continue to
grow indefinitely. Since the proposal ahead of demand - in the world has always been
more pictures than buyers - prices will become lower and lower.

Image source: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Experiments - Penn Treebank

Experiments - Penn Treebank

● All non-linearities are either ReLU
or tanh

● Similar to Mixture-of-Contexts
architecture

● Local optimum
○ Changing one non-linearity leads to

significant drop in performance

Experiments - Penn Treebank

● All non-linearities are either ReLU
or tanh

● Similar to Mixture-of-Contexts
architecture

● Local optimum
○ Changing one non-linearity leads to

significant drop in performance
● 10 hours with single GPU (1000x faster than

NAS!)

Experiments - Penn Treebank

Experiments - CIFAR10

Image source: https://www.cs.toronto.edu/~kriz/cifar.html

Experiments - CIFAR10

Experiments - CIFAR10

Experiments - CIFAR10

Conclusion
● ENAS speeds up NAS by more than 1000x in terms of GPU hours.

● This is done by sharing of parameters across child models during the search.

● Showed ENAS works well on both Penn Treebank and CIFAR10.

