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Why should we care about model architecture?

e Impressive gains have followed from improvements to model architecture
e LSTMs: gated connections replace traditional RNN
e Residual networks: ~25% relative improvement on ImageNet
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Hochreiter & Schmidhuber, 1997 He et al., 2015
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Architecture Search

e Desirable to efficiently search through architecture space

e (Common method of searching: grad student descent




Neural Architecture Search (NAS)

Sample architecture A
with probability p

[ '

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

{ ,

Compute gradient of p and
scale it by R to update
the controller

Zoph & Le, 2015



Flaw of NAS

o Wasteful to optimize model parameters from scratch each time
e Applications of NAS “use 450 GPUs for 3-4 days”



Efficient NAS (ENAS)

e Main Ideas:
o Share parameters among models in the search space
o Alternate between optimizing model parameters on the training set and
controller parameters on the validation set



Efficient NAS (ENAS)

e Main Ideas:
o Share parameters among models in the search space
o Alternate between optimizing model parameters on the training set and
controller parameters on the validation set
e Set-up: Start with a fully connected DAG specifying a computational graph
e Controller decides active connections in DAG (and a few other things)
e Parameters of transformations between nodes are shared



Simple Example of ENAS

e C(Consider 1-D neural network regression
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Simple Example of ENAS

e C(Consider 1-D neural network regression

w

ny yz
y=pw,x)
Z=W Zy + W X
Y XZ

w
Xz

e Goal: Find whether ¢ = tanh or ReLU and whether or not to connect x and z
o Make decision based on validation performance




Simple Example of ENAS

e Define a distribution over model architectures m with “controller” parameters O
e (Qur example: O = {91,62,6,364}

Pr(p = tanh & x, z connected) = O,

Pr(p = tanh & x, z disconnected) = O,
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Simple Example of ENAS

e Define a distribution over model architectures m with “controller” parameters O
e (Qur example: O = {91,62,6,364}

o Pr(p =tanh & x, z connected) = O,

o Pr(p = tanh & x, z disconnected) = O,

o Pr(p = ReLLU & x, z disconnected) = O,

o Pr(p = ReLU & x, z disconnected) = O,

e Model parameters: w = {w_ ,w_.,w_}
Xy’ yz’ Xz



Simple Example of ENAS

e Training procedure:

o Optimize w to minimize E [L(m; w)] on the training set

~p(m|0)

(e [B(m; W)] on the validation set

o Optimize O to maximize E_
o Repeat!



Simple Example of ENAS

e Optimize w to minimize E ~p<m|e)[L(m; w)] on the training set

V_E

W m ~p(m|9)[

L(m; w)]=E V L(m; w)]

m NP(mle)[



Simple Example of ENAS

e Optimize w to minimize E ~p(m|9)[L<m; w)] on the training set

V_E [L(m; w)]=E

W m ~p(m|6)

[V, L(m; w)]

m ~p(m|6

o Sample a model m from p(m|0)
o Compute V _L(m; w) on the training set using regular backprop & update
w



Simple Example of ENAS

e Optimize O to maximize E_ [R(m; w)] on the validation set

~p(m|0)

\VAND

m~p(m|6)[R(m; W) velog p(m|e)]



Simple Example of ENAS

e Optimize O to minimize E R(m; w)] on the validation set

m ~p(m|9)[

V. E [R(m; w)] = E

67 m ~p(m|6)

[R(m; w) V log p(m[6)]

m ~p(m|6)

o Sample a model m from p(m|0)
o Compute validation accuracy R(m; w)

o Use REINFORCE estimator R(m; w) V log p(m[0) to update 6



Simple Example of ENAS

e [Fxample: Sample that p=tanh and x, z not connected
o Update W and W, by gradient descent on the training set

W

& © O




Simple Example of ENAS

e [Fxample: Sample that p=Rel.U and x, z connected
o Update O using gradient descent on the validation set

W

DD O o
Z= Wzy+WX

XZ




Key assumption of ENAS

e Parameters that work well for one model architecture should work well for
others



ENAS for Recurrent Cell

o Given {x hD} how should h™® be computed?
e Start with N nodes in computation graph: h , h,, ..., h
e C(Controller is LSTM which operates for N steps

N



ENAS for Recurrent Cell

e At step i, controller decides:
o  Which previous node j€/1, ..., i-1/ to connect to node i
o An activation function ¢ € /tanh, ReLU, Id, of
e Then:
h=¢.(W_h)

1 1] J

e hWis set to average of nodes which are not used as input to another node



ENAS for Recurrent Cell Example
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ENAS for Recurrent Cell Example

________________ e Controller selects:
o  Step 1: tanh
S e Function computed:
o h, = tanh(W xV 4 W h)




ENAS for Recurrent Cell Example

________________ e (Controller selects:
o Step 1: tanh

o Step 2: 1, ReLU

e [unction computed:
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ENAS for Recurrent Cell Example

e C(Controller selects:
o Step 1: tanh
o Step 2: 1, ReLU
o Step 3: 2, ReLU

e [unction computed:
o h, = tanh(W xV 4 W h)
o h,=ReLU(W ,h)

o h, = ReLU(Wh,)




ENAS for Recurrent Cell Example

e Controller selects:
o Step 1: tanh
o Step 2: 1, ReLU
o Step 3: 2, ReLU
o Step 4: 1, tanh

e [unction computed:
o h, = tanh(W xV 4 W h)
h, = ReLU(W _h,)

1271

h, = ReLU(W_,h,)

23"'2
h, = tanh(W_,h )

o O O




ENAS for Recurrent Cell Example

e Controller selects:
o Step 1: tanh
o Step 2: 1, ReLU
o Step 3: 2, ReLU
o Step 4: 1, tanh

e [unction computed:
o h, = tanh(W xV 4 W h)
h, = ReLU(W _h,)

1271

h, = ReLU(W _,h,)

3 23772

h, = tanh(W_,h )

h® = 16 (hy+ h,)

o O O O




ENAS for Convolutional Networks

e At step i, controller decides:
o  Which previous node j€/1, ..., i-1/ to connect to node i
o  Which computation operation to use

g € {conv, ., conv

5 5 SEPCOND oy SEPCOND 5 o, MATPOOL, o, AVIPOOL, f

i3

e Then:

h=concat(g.(h. ,), h) for all selected |

1M 70- ]



ENAS for Convolutional Networks




ENAS for Convolutional Networks
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ENAS for Convolutional Networks

Conv | II;A:;I
3T3 :_:_ 3x3
{ Conv |
3x3
Node 1 Node 2

CO.I.’]V Max
Input 3x3 — Pool CAT
X 3x3




ENAS for Convolutional Networks
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ENAS for Convolutional Networks

e Search space is huge - with 12 layers, 1.6 x 10%? possible networks.



ENAS for Convolutional Cells

e Represents local computations inside a cell
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ENAS for Convolutional Cells

e Represents local computations inside a cell
o At step i, controller decides:
o  Which two previous node j€/1, ..., i-1/ to connect to node i
o  Which computation operations to use for the two selected nodes

g€ {identity, sepconv, ,, sepconv, ., maxrpool, ., avgpool, .f
e Then:
h.zZ(gij(hj)) for the two selected ]

1

e (-4 reduction cell where strides are 2)



ENAS for Convolutional Cells

e Search space - with 7 nodes, 1.3 x 10! configurations.



Deriving novel architectures from ENAS

e Sample several architectures from a trained ENAS model
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Deriving novel architectures from ENAS

e Sample several architectures from a trained ENAS model
e (Compute their reward on a single minibatch from the validation set

e Take one with the highest reward and re-train from scratch.



Kxperiments - Penn Treebank

t

Maybe there is a flaw in the photo industry itself? Is today's model of licensing and sales f— I

o 0
of photographs viable? How best to sell your photos? Will open resources photo stocks t
increase supply growth up until the number of pictures will not reach a level where
photographers could not even very cheap to sell good photos and make money on those
that sell? Theoretically, this horrible scenario is likely to become reality. Already Shutter V V V

stock alone offers more than 5 million photographs, which do not require payment of
royalties, and, as stated CEO John Orangey, each month the number of new revenue in the W S S S

+1
millions. Number of images in the bank Dreamtime also exceeded 5 million. Due to the ’ Ot— 1 ’ O t ’ O t+1 ’

fact that the old photos - sold or not - remain in their bases, photo stock will continue to

grow indefinitely. Since the proposal ahead of demand - in the world has always been W W
more pictures than buyers - prices will become lower and lower. T T
t

-1 xt t+1

Image source: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/




Kxperiments - Penn Treebank
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Kxperiments - Penn Treebank

e All non-linearities are either ReLU
or tanh
e Similar to Mixture-of-Contexts )
architecture =12 3]1E
e Local optimum - N g

o  Changing one non-linearity leads to
significant drop in performance




Kxperiments - Penn Treebank

e All non-linearities are either ReLU

or tanh
e Similar to Mixture-of-Contexts
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architecture

e Local optimum
o  Changing one non-linearity leads to

significant drop in performance
e 10 hours with single GPU (1000x faster than
NAS!)




Kxperiments - Penn Treebank

Params  Test

Architecture Additional Techniques (million) PPL
LSTM (Zaremba et al., 2014) Vanilla Dropout 66 78.4
LSTM (Gal & Ghahramani, 2016) | VD 66 0.
LSTM (Inan et al., 2017) VD, WT 51 68.5
LSTM (Melis et al., 2017) Hyper-parameters Search 24 59.5
LSTM (Yang et al., 2018) VD, WT, 42, AWD, MoC 22 57.6
LSTM (Merity et al., 2017) VD, WT, 42, AWD 24 57.3
LSTM (Yang et al., 2018) VD, WT, 42, AWD, MoS 22 56.0
RHN (Zilly et al., 2017) | VD, WT | 24 66.0
NAS (Zoph & Le, 2017) | VD, WT | 54 62.4
ENAS | VD, WT, ¢, | 24 55.8

Table 1. Test perplexity on Penn Treebank of ENAS and other baselines. Abbreviations: RHN is Recurrent Highway Network, VD is
Variational Dropout; WT is Weight Tying; {2 is Weight Penalty; AWD is Averaged Weight Drop; MoC is Mixture of Contexts; MoS is
Mixture of Softmaxes.



Kxperiments - CIFAR10
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Image source: https://www.cs.toronto.edu/~kriz/cifar.html




Kxperiments - CIFAR10

Times Params Error

Method GPUs (days) (million) (%)
DenseNet-BC (Huang et al., 2016) — — 25.6 3.46
DenseNet + Shake-Shake (Gastaldi, 2016) - — 26.2 2.86
DenseNet + CutOut (DeVries & Taylor, 2017) - - 26.2 2.56
Budgeted Super Nets (Veniat & Denoyer, 2017) — — 9.21
ConvFabrics (Saxena & Verbeek, 2016) — 21.2 7.43

Macro NAS + Q-Learning (Baker et al., 2017a) 10 8-10 11.2 6.92
2

Net Transformation (Cai et al., 2018) 5 19.7 5.70
FractalNet (Larsson et al., 2017) — 38.6 4.60
SMASH (Brock et al., 2018) 1 1.5 16.0 4.03
NAS (Zoph & Le, 2017) 800 21-28 7.1 447
NAS + more filters (Zoph & Le, 2017) 800 21-28 374 3.65
ENAS + macro search space 1 0.32 21.3 4.23
ENAS + macro search space + more channels 1 0.32 38.0 3.87
Hierarchical NAS (Liu et al., 2018) 200 1.5 61.3 3.63
Micro NAS + Q-Learning (Zhong et al., 2018) 32 3 — 3.60
Progressive NAS (Liu et al., 2017) 100 1.5 3.2 3.63
NASNet-A (Zoph et al., 2018) 450 3-4 33 3.41
NASNet-A + CutOut (Zoph et al., 2018) 450 3-4 33 2.65
ENAS + micro search space 1 0.45 4.6 3.54
ENAS + micro search space + CutOut 1 0.45 4.6 2.89

Table 2. Classification errors of ENAS and baselines on CIFAR-10. In this table, the first block presents DenseNet, one of the state-of-
the-art architectures designed by human experts. The second block presents approaches that design the entire network. The last block
presents techniques that design modular cells which are combined to build the final network.



Kxperiments - CIFAR10
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Kxperiments - CIFAR10

hli+1]

sep
3x3

sep
5x5

avg | |sep
3x3| |3x3

sep
3x3

avg
3x3

sep
5x5

Ry

Convolution Cell

hli+1]

Reduction Cell




Conclusion

e [NAS speeds up NAS by more than 1000x in terms of GPU hours.

e This is done by sharing of parameters across child models during the search.

e Showed ENAS works well on both Penn Treebank and CIFAR10.



