Grammar Variational Autoencoder (GVAE) & Syntax-Directed Variational Autoencoder

For Structured Data (SD-VAE)

Prepared by: Qi He, Wei Zheng, Siyu Ji

Motivation

- Train generative models to construct more complex, discrete data types.
- Existing methods often produce invalid outputs.

Expression	
x/1 + sin(3) + sin(x * x)	
$1/2 + (x) + \sin(x * x)$	
$x/x + (x) + \sin(x * x)$	

v3=sin(v0);v8=exp(2);v9=v3-v8;v5=v0*v9;return:v5 v2=exp(v0);v7=v2*v0;v9=cos(v7);v8=cos(v9);return:v8

Introduction: GVAE & SD-VAE

GVAE

- Learning syntactic rules to produce valid outputs
- Two different tasks : arithmetic expressions, molecules

SD-VAE

- Generate both syntactically and semantically correct data
- Efficient learning and inference
- Two different tasks: molecules generation, program generation

Variational Autoencoder for "text"

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., & Bengio, S. (2015). Generating sentences from a continuous space. *arXiv preprint arXiv:1511.06349*.

Challenges:

- 1. Formal Languages is very strict
- 2. Small changes in output leads to syntax error

Opportunities:

- 1. Syntax is context free
- 2. Grammar is known and fixed
- 3. Parses are unique

Generating string using the production rules in the grammar of the language

Encoding - form parse tree

Encoding - extract rules

Encoding - Convert rules to one hot encoding

...

GVAE vs CVAE

- Character VAE select any possible character
- Grammar VAE select syntactically-valid sequences
 - Stack
 - Mask operation

CVAE and GVAE do not always produce
 semantically-valid sequence

Syntax and semantics check

Figure 2: Bottom-up syntax and semantics check in compilers.

SD-VAE Structure

Figure 3: On-the-fly generative process of SD-VAE in order from (a) to (g). Steps: (a) stochastic generation of attribute; (b)(f)(g) constrained sampling with inherited attributes; (c) unconstrained sampling; (d) synthesized attribute calculation on generated subtree. (e) lazy evaluation of the attribute at root node.

Arithmetic expression

Given a set of 100,000 randomly generated univariate arithmetic expressions from the following grammar:

Limit the length to 15 production rules

Examples: sin(2), x/(3+1), 2 + x + sin(1/2), etc.

Train both CVAE and GVAE to learn a latent space

Smoothness

Interpolation between two arithmetic expressions Bowman et al. (2016)

- Encode two equations
- Perform Linear interpolation in the latent space

	-	Character VAE	Grammar VAE
	-	$3 \times x + \exp(3) + \exp(1)$	$3 \star x + \exp(3) + \exp(1)$
Intermediate naint		$2 + 2 + \exp(3) + \exp(1)$	$3 \times x + \exp(3) + \exp(1)$
intermediate point		$3 + 1 + \exp(3) + \exp(2)$	$3 \times x + \exp(x) + \exp(1/2)$
which does not	\rightarrow	2 + 1 + exp3) + exp(2)	$2 \times x + \exp(x) + \exp(1/2)$
decode to valid	\square	2 * 3 + (x) + exp(x * 3)	2 * x + (x) + exp(1 * x)
equations		2 * x + (2) + exp(x * 3)	2 * x + (x) + exp(x * x)
	-	2 * x + (1) + exp(x * x)	2 * x + (1) + exp(x * x)

Expression best fits the dataset

1000 input values x linearly-spaced between [-10,10]

True function: $1/3 + x + sin(x^*x)$

5 iterations of batch Bayesian optimization using Expected Improvement (EI)

Average across 10 repetitions of the process

Method	Frac. valid	Avg. score
GVAE	0.99±0.01	3.47 ±0.24
CVAE	0.86 ± 0.06	4.75 ± 0.25

*Use log(1+MSE) to measure best fit.

Expression best fits the dataset

True function: $1/3 + x + sin(x^*x)$

Method	#	Expression	Score
	1	$x/1 + \sin(3) + \sin(x * x)$	0.04
GVAE	2	$1/2 + (x) + \sin(x * x)$	0.10
	3	$x/x + (x) + \sin(x * x)$	0.37
	1	$x * 1 + \sin(3) + \sin(3/1)$	0.39
CVAE	2	x * 1 + sin(1) + sin(2 * 3)	0.40
	3	$x+1+\sin(3)+\sin(3+1)$	0.40

Program Semantics

The programs are represented as a list of statements. Each statement is an atomic arithmetic operation on variables. V3=sin(V0);V8=exp(2);V9=V3-V8;V5=V0*V9;return:V5

Program Semantics:

- 1.Variables should be defined before use.
- 2.Program must return a variable.
- 3.Number of statements should be less than 10.

SD-VAE v6=cos(7);v8=exp(9);v2=v8*v0;v9=v2/v6;return:v9

v6=cos(7);v8=exp(9);v2=v8*v0;v9=v2/v6;return:v9

v6=cos(7);v8=exp(9);v3=v8*v0;v9=v3/v8;return:v9

v6=cos(7);v8=v6/9;v1=7*v0;v7=v6/v1;return:v7

v6=cos(7);v8=v6/9;v1=7*v6;v7=v6+v1;return:v7

v6=cos(7);v8=v6/9;v1=7*v8;v7=v6+v8;return:v7

v6=exp(v0);v8=v6/2;v9=6*v8;v7=v9+v9;return:v7

v6=exp(v0);v8=v6-4;v9=6*v8;v7=v9+v8;return:v7

v6=exp(v0);v8=v6-4;v9=6*v6;v7=v9+v8;return:v7

v6=exp(v0);v8=v6-4;v4=4*v6;v7=v4+v8;return:v7

v6=exp(v0);v8=v6-4;v4=4*v8;v7=v4+v8;return:v7

CVAE

v6=cos(7);v8=exp(9);v2=v8*v0;v9=v2/v6;return:v9 v8=cos(3);v7=exp(7);v5=v7*v0;v9=v9/v6;return:v9 v4=cos(3);v8=exp(3);v2=v2*v0;v9=v8/v6;return:v9 v6=cos(3);v8=sin(3);v5=v4*1;v5=v3/v4;return:v9 v9=cos(1);v7=sin(1);v3=v1*5;v9=v9+v4;return:v9 v6=cos(1);v3=sin(10;;v9=8*v8;v7=v2/v2;return:v9 v5=exp(v0;v4=sin(v0);v3=8*v1;v7=v3/v2;return:v9 v5=exp(v0);v1=sin(1);v5=2*v3;v7=v3+v8;return:v7 v4=exp(v0);v1=v7-8;v9=8*v3;v7=v3+v8;return:v7 v4=exp(v0);v9=v6-8;v6=2*v5;v7=v3+v8;return:v7 v6=exp(v0);v8=v6-4;v4=4*v8;v7=v4+v8;return:v7

GVAE

v6=cos(7);v8=exp(9);v2=v8*v0;v9=v2/v6;return:v9 v3=cos(8);v6=exp(9);v6=v8*v0;v9=v2/v6;return:v9 v3=cos(8);v6=2/8;v6=v5*v9;v5=v8v5;return:v5 v3=cos(6);v6=2/9;v6=v5+v5;v5=v1+v6;return:v5 v5=cos(6);v1=2/9;v6=v3+v2;v2=v5-v6;return:v2 v5=sin(5);v3=v1/9;v6=v3-v3;v2=v7-v6;return:v2 v1=sin(1);v5=v5/2;v6=v2-v5;v2=v0-v6;return:v2 v1=sin(1);v7=v8/2;v8=v7/v9;v4=v4-v8;return:v4 v8=sin(1);v2=v8/2;v8=v0/v9;v4=v4-v8;return:v4 v6=exp(v0);v2=v6-4;v8=v0*v1;v7=v4+v8;return:v7 v6=exp(v0);v8=v6-4;v4=4*v8;v7=v4+v8;return:v7

Finding program

Finding program

Method	Program	Score
CVAE	v7=5+v0;v5=cos(v7);return:v5 v2=1-v0;v9=cos(v2);return:v9 v5=4+v0;v3=cos(v5);return:v3	$\begin{array}{c} 0.1742 \\ 0.2889 \\ 0.3043 \end{array}$
GVAE	<pre>v3=1/5;v9=-1;v1=v0*v3;return:v3 v2=1/5;v9=-1;v7=v2+v2;return:v7 v2=1/5;v5=-v2;v9=v5*v5;return:v9</pre>	$0.5454 \\ 0.5497 \\ 0.5749$
SD-VAE	<pre>v6=sin(v0);v5=exp(3);v4=v0*v6;return:v6 v5=6+v0;v6=sin(v5);return:v6 v6=sin(v0);v4=sin(v6);v5=cos(v4);v9=2/v4;return:v4</pre>	0.1206 0.1436 0.1456
Ground Truth	<pre>v1=sin(v0);v2=exp(v1);v3=v2-1;return:v3</pre>	_

*The distance is measured by log(1+MSE).

Molecules

- Training data: 250,000 SMILES strings randomly selected from ZINC database
- Goal: maximize the water-octanol partition coefficient (logP)
- Consider a penalized logP score that takes into account ring size and synthetic accessibility.

Best molecules by each method

Molecule Reconstruction

- Start with 5000 true molecules from a hold-out set
- Encode each molecule 10 times and decode each encoding 100 times
- 1000 decoded molecules for each of the 5000 input molecules
- Get percentage of molecules reconstructed out of the 5,000,000 attempts.

	Program	Zinc SMILES		
Methods	Reconstruction %*	Valid Prior %	Reconstruction %	Valid Prior %
SD-VAE	96.46(99.90,99.12,90.37)	100.00	76.2	43.5
GVAE	71.83 (96.30, 77.28, 41.90)	2.96	53.7	7.2
CVAE	13.79(40.46, 0.87, 0.02)	0.02	44.6	0.7

Prior Validity

- **Sample 1000 latent points from the prior distribution p(z) = N(0,I)**
- Decode each point 500 times
- Test if the decoded SMILES strings correspond to valid molecules.

20	Program	Zinc SMILES		
Methods	Reconstruction %*	Valid Prior %	Reconstruction %	Valid Prior %
SD-VAE	96.46 (99.90, 99.12, 90.37)	100.00	76.2	43.5
GVAE	71.83 (96.30, 77.28, 41.90)	2.96	53.7	7.2
CVAE	13.79(40.46, 0.87, 0.02)	0.02	44.6	0.7

Predictive performance

Objective	Method	Expressions
TT	GVAE	$-1.320{\pm}0.001$
LL	CVAE	-1.397 ± 0.003
DMSE	GVAE	$\textbf{0.884} \pm \textbf{0.002}$
NNISE	CVAE	0.975 ± 0.004

	Program		Zinc	
Method	LL	RMSE	LL	RMSE
CVAE	-4.943 ± 0.058	3.757 ± 0.026	-1.812 ± 0.004	1.504 ± 0.006
GVAE	-4.140 ± 0.038	3.378 ± 0.020	-1.739 ± 0.004	1.404 ± 0.006
SD-VAE	$\textbf{-3.754} \pm \textbf{0.045}$	$\textbf{3.185} \pm \textbf{0.025}$	$\textbf{-1.697} \pm \textbf{0.015}$	$\textbf{1.366} \pm \textbf{0.023}$

Thanks! Any questions?