
Grammar Variational Autoencoder (GVAE)
&

Syntax-Directed Variational Autoencoder
For Structured Data (SD-VAE)

Prepared by: Qi He, Wei Zheng, Siyu Ji

Motivation
● Train generative models to construct more complex,

discrete data types.
● Existing methods often produce invalid outputs.

Introduction：GVAE & SD-VAE

GVAE

● Learning syntactic rules to produce valid outputs
● Two different tasks：arithmetic expressions, molecules

SD-VAE

● Generate both syntactically and semantically correct data
● Efficient learning and inference
● Two different tasks: molecules generation, program generation

Variational Autoencoder for “text”

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., & Bengio, S. (2015). Generating
sentences from a continuous space. arXiv preprint arXiv:1511.06349.

Formal Languages

Challenges:

1. Formal Languages is
very strict

2. Small changes in output
leads to syntax error

Opportunities:

1. Syntax is context free
2. Grammar is known and fixed
3. Parses are unique

CCCc1ccc(I)cc1C1CCC-c1 CC(C)CCCCCc1ccc(Cl)nc1

Idea

Generating string using the production
rules in the grammar of the language

CCCc1ccc(I)cc1C1CCC-c1 CC(C)CCCCCc1ccc(Cl)nc1

Encoding - form parse tree

Encoding - extract rules

Encoding - Convert rules to one
hot encoding

Encoding - map to latent space

Was: One-hot characters
Now: One-hot production
Rules

Decoding

c1ccccc1

GVAE vs CVAE

▷ Character VAE select any possible character
▷ Grammar VAE select syntactically-valid sequences

○ Stack
○ Mask operation

▷ CVAE and GVAE do not always produce
semantically-valid sequence

Syntax and semantics check

SD-VAE Structure

Arithmetic expression

Given a set of 100,000 randomly generated univariate
arithmetic expressions from the following grammar:

Limit the length to 15 production rules

Examples: sin(2), x/(3+1), 2 + x + sin(1/2), etc.

Train both CVAE and GVAE to learn a latent space

Smoothness

Interpolation between two arithmetic expressions
Bowman et al. (2016)

○ Encode two equations
○ Perform Linear interpolation in the latent space

Expression best fits the dataset

1000 input values x linearly-spaced between [-10,10]

True function: 1/3 + x + sin(x*x)

5 iterations of batch Bayesian optimization using Expected
Improvement (EI)

Average across 10 repetitions of the process

*Use log(1+MSE) to measure best fit.

Expression best fits the dataset

True function: 1/3 + x + sin(x*x)

Program Semantics

The programs are represented as a list of statements.

Each statement is an atomic arithmetic operation on variables.

V3=sin ⁡(V0);V8=exp ⁡(2);V9=V3-V8;V5=V0∗V9;return:V5

Program Semantics:
1.Variables should be defined before use.
2.Program must return a variable.
3.Number of statements should be less than 10.

Title

Finding program

Finding program

Molecules

❏ Training data: 250,000 SMILES strings randomly selected
from ZINC database

❏ Goal: maximize the water-octanol partition coefficient
(logP)

❏ Consider a penalized logP score that takes into account ring
size and synthetic accessibility.

Best molecules by each method

Molecule Reconstruction

❏ Start with 5000 true molecules from a hold-out set

❏ Encode each molecule 10 times and decode each encoding 100

times

❏ 1000 decoded molecules for each of the 5000 input molecules

❏ Get percentage of molecules reconstructed out of the 5,000,000

attempts.

Prior Validity

❏ Sample 1000 latent points from the prior distribution p(z) = N(0,I)

❏ Decode each point 500 times

❏ Test if the decoded SMILES strings correspond to valid molecules.

Predictive performance

Thanks!
Any questions?

