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Why Latent Permutations & Matchings?

Align, canonicalize, and sort data
Want to learn the matching without explicit labels
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Representing Permutations

Given a permutation mapping
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We can represent it as multiplication of the identity matrix with permuted rows
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Parameterizing Permutations

Matching operator gives mapping from unconstrained matrices to permutations.

M(X) = argmax(P, X)p
PePn

Non-differentiable and requires considering n! permutations.




Relaxing Permutations

The set of doubly stochastic matrices gives the Birkhoff Polytope

By = AERNXN|ZCL@'J':ZCL¢]'=1
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The Birkhoff-von Neumann theorem states that this defines the convex hull of NxN
permutation matrices.



Sinkhorn Relaxation & Gumbel-Sinkhorn Reparam

See Demo in Jupyter notebook



Sinkhorn Networks for Matching
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Experiments - Shuffling Images
Original (O)
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Experiments - Sorting

Test distribution N=3 N=10 N=15 N=8 N=100 N=120
U(0,1) 0 0 .0 .0 0 01
U(0,1) (Vinyals et al., 2015) .06 0.43 0.9 - - -
U(0,10) .0 .0 0 .0 .02 .03
U(0,1000) .0 .0 .0 .01 .02 .04
U(1,2) .0 0 .0 .01 .04 .08
U(10,11) .0 .0 .0 .08 .08 .6
U(100,101) .0 0 .01 .02 .99 L
U (1000, 1001) .0 .0 .07 1. 1.

Table 1: Results on the number sorting task measured using Prop. any wrong. In the top two rows we
compare to Vinyals et al. (2015), showing that our approach can sort far more inputs at significantly
higher accuracy. In the bottom rows we evaluate generalization to different intervals on the real line.
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