
Probabilistic
ProgrammingAn Emerging Field

ML:
Algorithms &
Applications

STATS:
Inference &

Theory

PL:
Compilers,
Semantics,

Analysis

Probabilistic
Programming

Figure credit: Frank Wood

Why Probabilistic
Programming?

Simplify Machine Learning…
Start

Identify And Formalize
Problem, Gather Data

Design Model =
Read Papers, Do Math

Existing Model
Sufficient?

Choose Approximate
Inference Algorithm

Derive Updates And
Code Inference

Algorithm

Exists And
Can Use?

Performs Well
Statistically?

End

Performs Well
Computationally?

Search For Useable
Implementation

Test

Scale

Deploy

Simple Model?

Implement Using High
Level Modeling Tool

Tool
Supports Required

Features?

N

N

N

N

N N

Y

Y Y

Y

Y

Y

LEGEND Color indicates the skills that are
required to traverse the edge.

PhD-level machine learning or statistics

PhD-level machine learning or computer
science

Non-specialist

Feasible?

Y
N

Slide credits: Frank Wood

To This
Start

Identify And Formalize
Problem, Gather Data

Design Model =
Write Probabilistic

Program

Existing Model
Sufficient?

Derive Updates And
Code Inference

Algorithm

Exists And
Can Use?

Performs Well?

End

Performs Well
Computationally?

Search For Useable
Implementation

Debug, Test, Profile

Scale

Deploy

N Y

LEGEND Color indicates the skills that are
required to traverse the edge.

Non-specialist

Choose Approximate
Inference Algorithm

Simple Model?

Implement Using High
Level Modeling Tool

Tool
Supports Required

Features?

Feasible?

Slide credits: Frank Wood

Slide credits: Frank Wood

Automate Inference

Programming Language Representation / Abstraction Layer

Inference Engine(s)

Models / Stochastic Simulators

CARON ET AL.

This lack of consistency is shared by other models based on the Pólya urn construction (Zhu
et al., 2005; Ahmed and Xing, 2008; Blei and Frazier, 2011). Blei and Frazier (2011) provide a
detailed discussion on this issue and describe cases where one should or should not bother about it.

It is possible to define a slightly modified version of our model that is consistent under marginal-
isation, at the expense of an additional set of latent variables. This is described in Appendix C.

3.2 Stationary Models for Cluster Locations

To ensure we obtain a first-order stationary Pitman-Yor process mixture model, we also need to
satisfy (B). This can be easily achieved if for k 2 I(mt

t)

Uk,t ⇠
⇢

p (·|Uk,t�1) if k 2 I(mt
t�1)

H otherwise

where H is the invariant distribution of the Markov transition kernel p (·|·). In the time series
literature, many approaches are available to build such transition kernels based on copulas (Joe,
1997) or Gibbs sampling techniques (Pitt and Walker, 2005).

Combining the stationary Pitman-Yor and cluster locations models, we can summarize the full
model by the following Bayesian network in Figure 1. It can also be summarized using a Chinese
restaurant metaphor (see Figure 2).

Figure 1: A representation of the time-varying Pitman-Yor process mixture as a directed graphi-
cal model, representing conditional independencies between variables. All assignment
variables and observations at time t are denoted ct and zt, respectively.

3.3 Properties of the Models

Under the uniform deletion model, the number At =
P

im
t
i,t�1 of alive allocation variables at time

t can be written as

At =
t�1X

j=1

nX

k=1

Xj,k

8

 c0 Hr

� �m

 c1 ⇡m

Hy ✓m

 r0

 s0

 r1

 s1

 y1

 r2

 s2

 y2

rT

 sT

 yT

 r3

 s3

 y31

Gaussian Mixture Model

¼

µc

y
i

k

k

i

N

K

K

α

Gπ

θc

y
i

k

k o

i

N

K

K

α

Gπ

θc

y
i

k

k o

i

N

1

1

Figure : From left to right: graphical models for a finite Gaussian mixture model
(GMM), a Bayesian GMM, and an infinite GMM

ci |~⇡ ⇠ Discrete(~⇡)

~yi |ci = k ;⇥ ⇠ Gaussian(·|✓k).

~⇡|↵ ⇠ Dirichlet(·| ↵
K

, . . . ,
↵

K
)

⇥ ⇠ G0

Wood (University of Oxford) Unsupervised Machine Learning January, 2014 16 / 19

Latent Dirichlet Allocation

↵ wd
izd

i �k �

d = 1 . . . D

i = 1 . . . Nd
.

✓d

k = 1 . . . K

Figure 1. Graphical model for LDA model

Lecture LDA

LDA is a hierarchical model used to model text documents. Each document is modeled as
a mixture of topics. Each topic is defined as a distribution over the words in the vocabulary.
Here, we will denote by K the number of topics in the model. We use D to indicate the
number of documents, M to denote the number of words in the vocabulary, and Nd

. to
denote the number of words in document d. We will assume that the words have been
translated to the set of integers {1, . . . , M} through the use of a static dictionary. This is
for convenience only and the integer mapping will contain no semantic information. The
generative model for the D documents can be thought of as sequentially drawing a topic
mixture ✓d for each document independently from a DirK(↵~1) distribution, where DirK(~�)
is a Dirichlet distribution over the K-dimensional simplex with parameters [�1, �2, . . . , �K].
Each of K topics {�k}K

k=1 are drawn independently from DirM (�~1). Then, for each of the
i = 1 . . . Nd. words in document d, an assignment variable zd

i is drawn from Mult(✓d).
Conditional on the assignment variable zd

i , word i in document d, denoted as wd
i , is drawn

independently from Mult(�zd
i
). The graphical model for the process can be seen in Figure 1.

The model is parameterized by the vector valued parameters {✓d}D
d=1, and {�k}K

k=1, the
parameters {Zd

i }d=1,...,D,i=1,...,Nd
.
, and the scalar positive parameters ↵ and �. The model

is formally written as:

✓d ⇠ DirK(↵~1)

�k ⇠ DirM (�~1)

zd
i ⇠ Mult(✓d)

wd
i ⇠ Mult(�zd

i
)

1

✓d ⇠ DirK (↵~1)

�k ⇠ DirM(�~1)

zdi ⇠ Discrete(✓d)

wd
i ⇠ Discrete(�zdi

)

Wood (University of Oxford) Unsupervised Machine Learning January, 2014 15 / 19

What is Probabilistic
Programming?

Operative Definition
“Probabilistic programs are usual functional or
imperative programs with two added constructs:

(1) the ability to draw values at random from
distributions, and

(2) the ability to condition values of variables in a
program via observations.”

Gordon et al, 2014

Slide credits: Frank Wood

Probabilistic Programs:
Defining Sampling Processes

(Distribution objects)

Probabilistic Programs:
Defining Sampling Processes

(Distribution objects)

(Distributions support sample)

Probabilistic Programs:
Defining Sampling Processes

(Distribution objects)

(Distributions support sample)

(Easy to build complex distributions)

Probabilistic Programs:
Defining Sampling Processes

Probabilistic Programs:
Defining Sampling Processes

Probabilistic Programs:
Defining Sampling Processes

The generative model is now defined by a sampling process

A sampling process implicitly defines a distribution over output values…

Another PPL construct makes this distribution explicit: Infer

Probabilistic Programs:
`Infer` Construct: Convert Implicit Distribution to Explicit Object

(Implicitly Defined Distribution)

Probabilistic Programs:
`Infer` Construct: Convert Implicit Distribution to Explicit Object

(Implicitly Defined Distribution)

(Infer by Forward Sampling)

Probabilistic Programs:
`Infer` Construct: Convert Implicit Distribution to Explicit Object

(Implicitly Defined Distribution)

(Infer by Forward Sampling)

(Now Use like Distribution Object)

Probabilistic Programs:
`Infer` Construct: Convert Implicit Distribution to Explicit Object

Need one more language feature: “mem”
`Random but persistent`: random on first call,

 cached for subsequent calls
Why needed:

Call once

Need one more language feature: “mem”
`Random but persistent`: random on first call,

 cached for subsequent calls
Why needed:

Call once
Call twice

Need one more language feature: “mem”
`Random but persistent`: random on first call,

 cached for subsequent calls
Why needed:

Bob’s eye color shouldn’t change…

Call once
Call twice

Need one more language feature: `mem`
`Random but persistent`: random on first call,

 cached for subsequent calls
Why needed:

Call once
Call twice

Fixed: value is memoized after first run

Aside:
Dirichlet Process as

Probabilistic Program

Recall: Dirichlet as Stick-Breaking Process

As generative model:

- Walk down the natural numbers

- Flip a biased coin at each number :

- If FALSE, continue to next number. If TRUE, return the number

As probabilistic program

As probabilistic program

Universal Inference for
Probabilistic Programming

Languages

So far…

• Build complicated probabilistic models with PPLs

• Using sample statements: Specify prior generative proc.

• Using factor statements: Specify data likelihood

• A prob. program represents posterior over possible execution
“traces”

How to develop generic inference algorithms?

What is a “Trace”?
• Sequence of M sample statements

• Sequence of M sampled values

• Sequence of N factor statements

{xj}Mj=1

{fj , ✓j}Mj=1

{gi,�i, yi}Ni=1

Inference over traces
• Trace probability:

• Posterior over traces:

• What we care about:

E⇡(x) [f(x)]

Sampling based inference over
“traces”

Inference over trace space: exploration—exploitation task

• Explore possible execution paths

• As a side-effect, compute “goodness” of a trace

• Exploit good (more probable) traces

• Return projection of the posterior over traces

Inference over execution traces

x1 ⇠ Categorical(
1

3
,
1

3
,
1

3
)

x2|x1 = 0 ⇠ Poisson(7)

x2|x1 = 2 ⇠ Poisson(9)

Inference over execution traces

x1 ⇠ Categorical(
1

3
,
1

3
,
1

3
)

x2|x1 = 0 ⇠ Poisson(7)

x2|x1 = 2 ⇠ Poisson(9)

exp

⇢
� (1�x2)2

2·10�6

�

p
2⇡·10�3

Importance sampling
• Run K independent copies of the program simulating

from the prior

• Calculate importance weights as follows:

• Approximate expectation by Monte Carlo integration

E⇡(x) [f(x)] ⇡
KX

k=1

W kf(xk)

Importance sampling

f(xK), wK

f(x1), w1

f(x2), w2

Single-Site Metropolis—Hastings

Want samples from

• Pick a proposal distribution that generates a
new trace given current trace

• Use Metropolis—Hastings acceptance

Single-Site Metropolis—Hastings

↵1

↵2

↵K

Single-Site Metropolis—Hastings

q(x0|xs) =
1

Ms
(x0

l|xs
l)

M 0Y

j=l+1

f 0
j(x

0
j |✓0j)

Ms = Number of random elements in old trace

(x0
l|xs

l) = Proposal distribution for the lth random element

Can set

What did we cover?

CHURCH

WebPPL

ANGLICAN

VENTURE

MONAD-BAYES

What did we miss?

That’s all folks!

