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Why Probabilistic 
Programming?
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Automate Inference

Programming Language Representation / Abstraction Layer

Inference Engine(s)

Models / Stochastic Simulators

CARON ET AL.

This lack of consistency is shared by other models based on the Pólya urn construction (Zhu
et al., 2005; Ahmed and Xing, 2008; Blei and Frazier, 2011). Blei and Frazier (2011) provide a
detailed discussion on this issue and describe cases where one should or should not bother about it.

It is possible to define a slightly modified version of our model that is consistent under marginal-
isation, at the expense of an additional set of latent variables. This is described in Appendix C.

3.2 Stationary Models for Cluster Locations

To ensure we obtain a first-order stationary Pitman-Yor process mixture model, we also need to
satisfy (B). This can be easily achieved if for k 2 I(mt

t)

Uk,t ⇠
⇢

p (·|Uk,t�1) if k 2 I(mt
t�1)

H otherwise

where H is the invariant distribution of the Markov transition kernel p (·|·). In the time series
literature, many approaches are available to build such transition kernels based on copulas (Joe,
1997) or Gibbs sampling techniques (Pitt and Walker, 2005).

Combining the stationary Pitman-Yor and cluster locations models, we can summarize the full
model by the following Bayesian network in Figure 1. It can also be summarized using a Chinese
restaurant metaphor (see Figure 2).

Figure 1: A representation of the time-varying Pitman-Yor process mixture as a directed graphi-
cal model, representing conditional independencies between variables. All assignment
variables and observations at time t are denoted ct and zt, respectively.

3.3 Properties of the Models

Under the uniform deletion model, the number At =
P

im
t
i,t�1 of alive allocation variables at time

t can be written as

At =
t�1X

j=1

nX

k=1

Xj,k
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Figure : From left to right: graphical models for a finite Gaussian mixture model
(GMM), a Bayesian GMM, and an infinite GMM

ci |~⇡ ⇠ Discrete(~⇡)
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Latent Dirichlet Allocation
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Figure 1. Graphical model for LDA model

Lecture LDA

LDA is a hierarchical model used to model text documents. Each document is modeled as
a mixture of topics. Each topic is defined as a distribution over the words in the vocabulary.
Here, we will denote by K the number of topics in the model. We use D to indicate the
number of documents, M to denote the number of words in the vocabulary, and Nd

. to
denote the number of words in document d. We will assume that the words have been
translated to the set of integers {1, . . . , M} through the use of a static dictionary. This is
for convenience only and the integer mapping will contain no semantic information. The
generative model for the D documents can be thought of as sequentially drawing a topic
mixture ✓d for each document independently from a DirK(↵~1) distribution, where DirK(~�)
is a Dirichlet distribution over the K-dimensional simplex with parameters [�1, �2, . . . , �K ].
Each of K topics {�k}K

k=1 are drawn independently from DirM (�~1). Then, for each of the
i = 1 . . . Nd. words in document d, an assignment variable zd

i is drawn from Mult(✓d).
Conditional on the assignment variable zd

i , word i in document d, denoted as wd
i , is drawn

independently from Mult(�zd
i
). The graphical model for the process can be seen in Figure 1.

The model is parameterized by the vector valued parameters {✓d}D
d=1, and {�k}K

k=1, the
parameters {Zd

i }d=1,...,D,i=1,...,Nd
.
, and the scalar positive parameters ↵ and �. The model

is formally written as:

✓d ⇠ DirK(↵~1)

�k ⇠ DirM (�~1)

zd
i ⇠ Mult(✓d)

wd
i ⇠ Mult(�zd

i
)

1

✓d ⇠ DirK (↵~1)

�k ⇠ DirM(�~1)

zdi ⇠ Discrete(✓d)

wd
i ⇠ Discrete(�zdi

)
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What is Probabilistic 
Programming?



Operative Definition
“Probabilistic programs are usual functional or 
imperative programs with two added constructs:  

(1) the ability to draw values at random from 
distributions, and  

(2) the ability to condition values of variables in a 
program via observations.”   

Gordon et al, 2014

Slide credits: Frank Wood



Probabilistic Programs:  
Defining Sampling Processes



(Distribution objects)
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(Distribution objects)

(Distributions support sample)

Probabilistic Programs:  
Defining Sampling Processes



(Distribution objects)

(Distributions support sample)

(Easy to build complex distributions)

Probabilistic Programs:  
Defining Sampling Processes



Probabilistic Programs:  
Defining Sampling Processes



Probabilistic Programs:  
Defining Sampling Processes

The generative model is now defined by a sampling process

A sampling process implicitly defines a distribution over output values…

Another PPL construct makes this distribution explicit: Infer



Probabilistic Programs:  
`Infer` Construct: Convert Implicit Distribution to Explicit Object

(Implicitly Defined Distribution)
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(Infer by Forward Sampling)



Probabilistic Programs:  
`Infer` Construct: Convert Implicit Distribution to Explicit Object

(Implicitly Defined Distribution)

(Infer by Forward Sampling)

(Now Use like Distribution Object)



Probabilistic Programs:  
`Infer` Construct: Convert Implicit Distribution to Explicit Object



Need one more language feature: “mem” 
`Random but persistent`: random on first call, 

 cached for subsequent calls 
Why needed:

Call once
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Need one more language feature: “mem” 
`Random but persistent`: random on first call, 

 cached for subsequent calls 
Why needed:

Bob’s eye color shouldn’t change…

Call once
Call twice



Need one more language feature: `mem` 
`Random but persistent`: random on first call, 

 cached for subsequent calls 
Why needed:

Call once
Call twice

Fixed: value is memoized after first run



Aside:  
Dirichlet Process as 

Probabilistic Program



Recall: Dirichlet as Stick-Breaking Process 

As generative model: 

- Walk down the natural numbers 

- Flip a biased coin at each number : 

- If FALSE, continue to next number. If TRUE, return the number 



As probabilistic program



As probabilistic program



Universal Inference for 
Probabilistic Programming 

Languages



So far… 

• Build complicated probabilistic models with PPLs 

• Using sample statements: Specify prior generative proc. 

• Using factor statements: Specify data likelihood 

• A prob. program represents posterior over possible execution 
“traces” 

How to develop generic inference algorithms? 



What is a “Trace”?
• Sequence of M sample statements

• Sequence of M sampled values

• Sequence of N factor statements

{xj}Mj=1

{fj , ✓j}Mj=1

{gi,�i, yi}Ni=1



Inference over traces
• Trace probability:  

• Posterior over traces: 

• What we care about:

E⇡(x) [f(x)]



Sampling based inference over 
“traces”

Inference over trace space: exploration—exploitation task 

• Explore possible execution paths 

• As a side-effect, compute “goodness” of a trace 

• Exploit good (more probable) traces 

• Return projection of the posterior over traces



Inference over execution traces

x1 ⇠ Categorical(
1

3
,
1

3
,
1

3
)

x2|x1 = 0 ⇠ Poisson(7)

x2|x1 = 2 ⇠ Poisson(9)



Inference over execution traces

x1 ⇠ Categorical(
1

3
,
1

3
,
1

3
)

x2|x1 = 0 ⇠ Poisson(7)

x2|x1 = 2 ⇠ Poisson(9)
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Importance sampling
• Run K independent copies of the program simulating 

from the prior 

• Calculate importance weights as follows: 

• Approximate expectation by Monte Carlo integration

E⇡(x) [f(x)] ⇡
KX

k=1

W kf(xk)



Importance sampling

f(xK), wK

f(x1), w1

f(x2), w2



Single-Site Metropolis—Hastings

Want samples from  

• Pick a proposal distribution                  that  generates a 
new trace given current trace 

• Use Metropolis—Hastings acceptance  



Single-Site Metropolis—Hastings

↵1

↵2

↵K



Single-Site Metropolis—Hastings

q(x0|xs) =
1

Ms
(x0

l|xs
l )

M 0Y

j=l+1

f 0
j(x

0
j |✓0j)

Ms = Number of random elements in old trace

(x0
l|xs

l ) = Proposal distribution for the lth random element

Can set  



What did we cover?

CHURCH

WebPPL

ANGLICAN

VENTURE

MONAD-BAYES



What did we miss?



That’s all folks!


