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Neural Networks: the good and the bad

Neural Networks : ...

are flexible function approximators that scale really well

are overparameterized and prone to overfitting and memorization
So what can we do about this?
Model compression and sparsification!

Consider the Empirical Risk minimization problem
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where
{(x:,y:)}iL; is the iid dataset of input-output pairs
f(x;0) is the NN using parameters 6
[16]]p is the LP norm

L(-) is the loss function
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Figure: L, norm penalties for parameter 6 from lousizos et al
The Lo "norm” is just the number of nonzero parameters.
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This does not impose shrinkage on large 0 rather it directly penalizes ||



Reparameterizing

If we use the L, norm R(6) is non-differentiable at 0.
How can we relax this optimization and ensure 0 € 7

First, Reparameterize by putting binary gates z; on each ;.
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let z; ~ Ber(m;) with pmf g(z;|7;) and we can formulate the problem as:
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we cannot optimize the first term.



Smooth the objective so we can optimize it!

Let gates z be given by a hard-sigmoid rectification of s, as follows

z = g(s) = min(1, max(0,s)), s~ go(s)
The probability of a gate being active is
9¢(z #0) =1 — Qq(s < 0)

Then using the reparametrization trick on s = f(¢, €) so z = g(f (¢, €))
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Okay but which distribution gg(s) should we use?



Hard Concrete Distribution

An appropriate smoothing distribution g(s) is the binary concrete rv s :

u~U(0,1), s=Sigmoid ((logu — log(1 —u) + loga)/pB))

5=s5((—7v)+~vand z=min(l, max(0,5))

s is a concrete binary distributed
« is the location parameter, and
[ is the temperature parameter

7 is the hard concrete distribution.

we stretch s — 5 into the range (v, () where ( < 0 and v > 1.
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Figure 2: (a) The binary concrete distribution with location loga = 0 and temperature § = 0.5
and the hard concrete equivalent distribution obtained by stretching the concrete distribution to
(y = —0.1,¢ = 1.1) and then applying a hard-sigmoid. Under this specification the hard concrete
distribution assigns, roughly, half of its mass to {0, 1} and the rest to (0, 1). (b) The expected value
of the afforementioned concrete and hard concrete gate as a function of the location log «, obtained
by averaging 10000 samples. We also added the value of the gates obtained by removing the noise
entirely. We can see that the noise smooths the hard-sigmoid to a sigmoid on average.

Figure: Figure 2 from lousizos et al



Hard Concrete Distribution

From earlier, we had 1 — Q4 (s < 0) in Lo complexity loss of the objective
function. Now, if the random variable is hard concrete, then we can say:

1 — Qg(s < 0) = Sigmoid(log o — Blog _T”)

During test time, the authors use the following for the gate:

z = min(1, max(0, Sigmoid(log a)(¢ — ) + 7)) and 8* = 6* © 2



Experiments - MNIST Classification and Sparsification

Network & size  Method Pruned architecture  Error (%)
MLP Sparse VD (Molchanov et al., 2017) 512-114-72 1.8
T84-300-100 BC-GNIJ (Louizos et al., 2017) 278-08-13 1.8
BC-GHS (Louizos et al., 2017) 311-86-14 1.8
Ly, . A=01/N 219-214-100 1.4
Lq, . A sep. 266-88-33 1.8
LeNet-5-Caffe  Sparse VD (Molchanov et al.. 2017) 14-19-242-131 1.0
20-50-800-500  GL (Wen et al., 2016) 3-12-192-500 1.0
SBP (Neklyudov et al., 2017) 3-18-284-283 09
BC-GNJ (Louizos et al., 2017) 8-13-88-13 1.0
BC-GHS (Louizos et al., 2017) 5-10-76-16 1.0
Lo, A=01/N 20-25-45-462 0.9
Ly,.. A sep. 9. 18-635-25 1.0
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Experiments - MNIST Classification
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Figure: Expected FLOPs. Left is the MLP. Right is the LeNet-5
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Experiments - CIFAR Classification

Network CIFAR-10  CIFAR-100
original-ResNet-110 (He et al., 2016a) 6.43 25.16
pre-act-ResNet-110 (He et al.., 2016b) 6.37 -
WRN-28-10 (Zagoruyko & Komodakis, 2016) 4.00 2118
WRN-28-10-dropout (Zagoruyko & Komodakis. 2016) 389 18.85
WRN-28-10-Lg,_, A = 0.001/N 383 18.75
WRN-28-10-Ly,_, A = 0.002/N 393 19.04
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Experiments - CIFAR Classification
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Discussion & Future Work

Discussion
Lo penalty can save memory and computation

Lo regularization lead to competitive predictive accuracy and stability

Future Work

Adopt a full Bayesian treatment over the parameter 6



THANK YOU ...



