LEARNING SPARSE NEURAL NETWORKS
THROUGH LO REGULARIZATION

Christos Louizos, Max Welling, Diederik P. Kingma

STA 4273 PAPER PRESENTATION

DANIEL FLAM-SHEPHERD, ARMAAN FARHADI & ZHAOYU GUO

March 2nd, 2018

Neural Networks: the good and the bad

Neural Networks : ...

are flexible function approximators that scale really well

are overparameterized and prone to overfitting and memorization
So what can we do about this?
Model compression and sparsification!

Consider the Empirical Risk minimization problem

N
meln R(0) g f(xi50),y:) + AllO]]»

where
{(x:,y:)}iL; is the iid dataset of input-output pairs
f(x;0) is the NN using parameters 6
[16]]p is the LP norm

L(-) is the loss function

N

Lp Norms

p=1 — p=05 — p=0
4 4
=
g2
d \/ \/ —[—
6 9 B 9
Figure: L, norm penalties for parameter 6 from lousizos et al
The Lo "norm” is just the number of nonzero parameters.
16|
6]l0 =D 1[0, # 0]
j=1

This does not impose shrinkage on large 0 rather it directly penalizes ||

Reparameterizing

If we use the L, norm R(6) is non-differentiable at 0.
How can we relax this optimization and ensure 0 € 7

First, Reparameterize by putting binary gates z; on each ;.

16|
0; =0;2, 2z €{0,1}, 6, #0, & [|6llo=>_z
j=1

let z; ~ Ber(m;) with pmf g(z;|7;) and we can formulate the problem as:

N d
. A 1 A
min R(0,7) = Eyz)m) NZL(f(xi;GGZ)J’i) +/\Z7rj
=1

o, =1

we cannot optimize the first term.

Smooth the objective so we can optimize it!

Let gates z be given by a hard-sigmoid rectification of s, as follows

z = g(s) = min(1, max(0,s)), s~ go(s)
The probability of a gate being active is
9¢(z #0) =1 — Qq(s < 0)

Then using the reparametrization trick on s = f(¢, €) so z = g(f (¢, €))

i

N
minB o | 50 L8 0 9(F(6,0)).v) | +AD_ 1= Qalsy <0

i=1 j=1

Okay but which distribution gg(s) should we use?

Hard Concrete Distribution

An appropriate smoothing distribution g(s) is the binary concrete rv s :

u~U(0,1), s=Sigmoid ((logu — log(1 —u) + loga)/pB))

5=s5((—7v)+~vand z=min(l, max(0,5))

s is a concrete binary distributed
« is the location parameter, and
[is the temperature parameter

7 is the hard concrete distribution.

we stretch s — 5 into the range (v, () where (< 0 and v > 1.

—— concrete —— concrete
= hard concrete, p(z = 0) =0.23, p(z=1) =023 —— hard concrete
08 = Ep(g[concrete}

—— Epiolhard concrete]

Figure 2: (a) The binary concrete distribution with location loga = 0 and temperature § = 0.5
and the hard concrete equivalent distribution obtained by stretching the concrete distribution to
(y = —0.1,¢ = 1.1) and then applying a hard-sigmoid. Under this specification the hard concrete
distribution assigns, roughly, half of its mass to {0, 1} and the rest to (0, 1). (b) The expected value
of the afforementioned concrete and hard concrete gate as a function of the location log «, obtained
by averaging 10000 samples. We also added the value of the gates obtained by removing the noise
entirely. We can see that the noise smooths the hard-sigmoid to a sigmoid on average.

Figure: Figure 2 from lousizos et al

Hard Concrete Distribution

From earlier, we had 1 — Q4 (s < 0) in Lo complexity loss of the objective
function. Now, if the random variable is hard concrete, then we can say:

1 — Qg(s < 0) = Sigmoid(log o — Blog _T”)

During test time, the authors use the following for the gate:

z = min(1, max(0, Sigmoid(log a)(¢ —) + 7)) and 8* = 6* © 2

Experiments - MNIST Classification and Sparsification

Network & size Method Pruned architecture Error (%)
MLP Sparse VD (Molchanov et al., 2017) 512-114-72 1.8
T84-300-100 BC-GNIJ (Louizos et al., 2017) 278-08-13 1.8
BC-GHS (Louizos et al., 2017) 311-86-14 1.8
Ly, . A=01/N 219-214-100 1.4
Lq, . A sep. 266-88-33 1.8
LeNet-5-Caffe Sparse VD (Molchanov et al.. 2017) 14-19-242-131 1.0
20-50-800-500 GL (Wen et al., 2016) 3-12-192-500 1.0
SBP (Neklyudov et al., 2017) 3-18-284-283 09
BC-GNJ (Louizos et al., 2017) 8-13-88-13 1.0
BC-GHS (Louizos et al., 2017) 5-10-76-16 1.0
Lo, A=01/N 20-25-45-462 0.9
Ly,.. A sep. 9. 18-635-25 1.0

9/14

Experiments - MNIST Classification

\ 6x10°

4x10°
— —— Original —
W W
% — Dropout %
& e’ — Lo A=0UN F
= 1410
— Lo, A sep.
3x10°
2x10°
0 20000 40000 60000 80000 100000 120000

Iterations

20000

—— Original
— Dropout

— Lo A=0.1N

<— Lo, A sep.

000

60000
Iterations

80000

100000

Figure: Expected FLOPs. Left is the MLP. Right is the LeNet-5

120000

10 /14

Experiments - CIFAR Classification

Network CIFAR-10 CIFAR-100
original-ResNet-110 (He et al., 2016a) 6.43 25.16
pre-act-ResNet-110 (He et al.., 2016b) 6.37 -
WRN-28-10 (Zagoruyko & Komodakis, 2016) 4.00 2118
WRN-28-10-dropout (Zagoruyko & Komodakis. 2016) 389 18.85
WRN-28-10-Lg,_, A = 0.001/N 383 18.75
WRN-28-10-Ly,_, A = 0.002/N 393 19.04

11/14

Experiments - CIFAR Classification

350

E[FLOPs]

325

111

350

tet1

0

—— Dropout
—— Lo, A=0.001/N
Lo,., A = 0.002/N

E[FLOPs]

325

0000 20000 30000 40000 50000 60000 70000 80000
lterations

Figure: Expected FLOPs of WRN at CIFAR 10 (left) & 100 (right)

o

10000

20000

Dropout

Lo, A= 0.001/N
Lo, A =0.002/N

30000

40000
Iterations

50000

60000

70000

80000

Discussion & Future Work

Discussion
Lo penalty can save memory and computation

Lo regularization lead to competitive predictive accuracy and stability

Future Work

Adopt a full Bayesian treatment over the parameter 6

THANK YOU ...

