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Neural Networks: the good and the bad

Neural Networks : ...

1 are flexible function approximators that scale really well

2 are overparameterized and prone to overfitting and memorization

So what can we do about this?

Model compression and sparsification!

Consider the Empirical Risk minimization problem

min
θ

R(θ) =
1

N

N∑
i=1

L(f(xi;θ),yi) + λ||θ||p

where

1 {(xi,yi)}Ni=1 is the iid dataset of input-output pairs

2 f(x;θ) is the NN using parameters θ

3 ||θ||p is the Lp norm

4 L(·) is the loss function
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Lp Norms

Figure: Lp norm penalties for parameter θ from lousizos et al

The L0 ”norm” is just the number of nonzero parameters.

||θ||0 =

|θ|∑
j=1

I[θj 6= 0]

This does not impose shrinkage on large θj rather it directly penalizes |θ|.
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Reparameterizing

If we use the Lp norm R(θ) is non-differentiable at 0.

How can we relax this optimization and ensure 0 ∈ θ?

First, Reparameterize by putting binary gates zj on each θj .

θj = θ̃jzj , zj ∈ {0, 1}, θ̃j 6= 0, & ||θ||0 =

|θ|∑
j=1

zj

let zj ∼ Ber(πj) with pmf q(zj |πj) and we can formulate the problem as:

min
θ̃,π

R(θ̃,π) = Eq(z|π)

[
1

N

N∑
i=1

L(f(xi; θ̃ � z),yi)

]
+ λ

|θ|∑
j=1

πj

we cannot optimize the first term.
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Smooth the objective so we can optimize it!

Let gates z be given by a hard-sigmoid rectification of s, as follows

z = g(s) = min(1,max(0, s)), s ∼ qφ(s)

The probability of a gate being active is

qφ(z 6= 0) = 1−Qφ(s ≤ 0)

Then using the reparametrization trick on s = f(φ, ε) so z = g(f(φ, ε))

min
θ̃,φ

Ep(ε)

[
1

N

N∑
i=1

L(f(xi; θ̃ � g(f(φ, ε))),yi)

]
+ λ

|θ|∑
j=1

1−Qφ(sj ≤ 0)

Okay but which distribution qφ(s) should we use?

5 / 14



Hard Concrete Distribution

An appropriate smoothing distribution q(s) is the binary concrete rv s :

u ∼ U(0, 1), s = Sigmoid ((log u− log(1− u) + logα)/β))

s = s(ζ − γ) + γ and z = min(1,max(0, s))

1 s is a concrete binary distributed

2 α is the location parameter, and

3 β is the temperature parameter

4 z is the hard concrete distribution.

5 we stretch s→ s̄ into the range (γ, ζ) where ζ < 0 and γ > 1.
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Figure: Figure 2 from lousizos et al
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Hard Concrete Distribution

From earlier, we had 1−Qφ(s ≤ 0) in L0 complexity loss of the objective
function. Now, if the random variable is hard concrete, then we can say:

1−Qφ(s ≤ 0) = Sigmoid(logα− β log
−γ
ζ

)

During test time, the authors use the following for the gate:

ẑ = min(1,max(0, Sigmoid(logα)(ζ − γ) + γ)) and θ∗ = θ̃∗ � ẑ

8 / 14



Experiments - MNIST Classification and Sparsification
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Experiments - MNIST Classification

Figure: Expected FLOPs. Left is the MLP. Right is the LeNet-5
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Experiments - CIFAR Classification
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Experiments - CIFAR Classification

Figure: Expected FLOPs of WRN at CIFAR 10 (left) & 100 (right)
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Discussion & Future Work

Discussion

1 L0 penalty can save memory and computation

2 L0 regularization lead to competitive predictive accuracy and stability

Future Work

1 Adopt a full Bayesian treatment over the parameter θ
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Thank You . . .
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