LEARNING SPARSE NEURAL NETWORKS THROUGH L0 REGULARIZATION

Christos Louizos, Max Welling, Diederik P. Kingma

STA 4273 PAPER PRESENTATION

DANIEL FLAM-SHEPHERD, ARMAAN FARHADI & ZHAOYU GUO

March 2nd, 2018

Neural Networks: the good and the bad

Neural Networks : ...

1 are flexible function approximators that scale really well

 ${\bf 2}$ are overparameterized and prone to overfitting and memorization

So what can we do about this?

Model compression and sparsification!

Consider the Empirical Risk minimization problem

$$\min_{\boldsymbol{\theta}} R(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} L(f(\mathbf{x}_i; \boldsymbol{\theta}), \mathbf{y}_i) + \lambda ||\boldsymbol{\theta}||_p$$

where

 $[\{ (\mathbf{x}_i, \mathbf{y}_i) \}_{i=1}^N$ is the iid dataset of input-output pairs

- **2** $f(\mathbf{x}; \boldsymbol{\theta})$ is the NN using parameters $\boldsymbol{\theta}$
- $||\boldsymbol{\theta}||_p$ is the L^p norm
- **4** $L(\cdot)$ is the loss function

Lp Norms

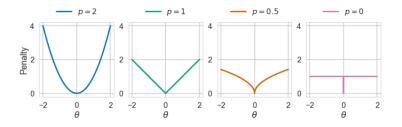


Figure: L_p norm penalties for parameter θ from lousizos et al

The L_0 "norm" is just the number of nonzero parameters.

$$||\boldsymbol{\theta}||_0 = \sum_{j=1}^{|\boldsymbol{\theta}|} \mathbb{I}[\boldsymbol{\theta}_j \neq 0]$$

This does *not* impose shrinkage on large θ_j rather it directly penalizes $|\theta|$.

Reparameterizing

If we use the L_p norm $R(\boldsymbol{\theta})$ is non-differentiable at 0.

How can we relax this optimization and ensure $0 \in \boldsymbol{\theta}$? First, Reparameterize by putting binary gates z_j on each θ_j .

$$\theta_j = \tilde{\theta}_j z_j, \ z_j \in \{0, 1\}, \ \tilde{\theta}_j \neq 0, \& ||\boldsymbol{\theta}||_0 = \sum_{j=1}^{|\boldsymbol{\theta}|} z_j$$

let $z_j \sim \text{Ber}(\pi_j)$ with pmf $q(z_j|\pi_j)$ and we can formulate the problem as:

$$\min_{\tilde{\boldsymbol{\theta}},\boldsymbol{\pi}} R(\tilde{\boldsymbol{\theta}},\boldsymbol{\pi}) = \mathbb{E}_{q(\mathbf{z}|\boldsymbol{\pi})} \left[\frac{1}{N} \sum_{i=1}^{N} L(f(\mathbf{x}_i; \tilde{\boldsymbol{\theta}} \odot \mathbf{z}), \mathbf{y}_i) \right] + \lambda \sum_{j=1}^{|\boldsymbol{\theta}|} \pi_j$$

we cannot optimize the first term.

Smooth the objective so we can optimize it!

Let gates \mathbf{z} be given by a hard-sigmoid rectification of \mathbf{s} , as follows

$$\mathbf{z} = g(\mathbf{s}) = \min(\mathbf{1}, \max(\mathbf{0}, \mathbf{s})), \ \mathbf{s} \sim q_{\boldsymbol{\phi}}(\mathbf{s})$$

The probability of a gate being active is

$$q_{\phi}(\mathbf{z} \neq 0) = \mathbf{1} - Q_{\phi}(\mathbf{s} \le \mathbf{0})$$

Then using the reparametrization trick on $\mathbf{s} = f(\boldsymbol{\phi}, \boldsymbol{\epsilon})$ so $\mathbf{z} = g(f(\boldsymbol{\phi}, \boldsymbol{\epsilon}))$

$$\min_{\tilde{\boldsymbol{\theta}}, \boldsymbol{\phi}} \mathbb{E}_{p(\boldsymbol{\epsilon})} \left[\frac{1}{N} \sum_{i=1}^{N} L(f(\mathbf{x}_i; \tilde{\boldsymbol{\theta}} \odot g(f(\boldsymbol{\phi}, \boldsymbol{\epsilon}))), \mathbf{y}_i) \right] + \lambda \sum_{j=1}^{|\boldsymbol{\theta}|} \mathbf{1} - Q_{\boldsymbol{\phi}}(s_j \le 0)$$

Okay but which distribution $q_{\phi}(\mathbf{s})$ should we use?

An appropriate smoothing distribution $q(\mathbf{s})$ is the binary concrete rv s:

$$u \sim U(0, 1), \quad s = \text{Sigmoid} \left((\log u - \log(1 - u) + \log \alpha) / \beta) \right)$$

 $\overline{s} = s(\zeta - \gamma) + \gamma \text{ and } \quad z = \min(1, \max(0, \overline{s}))$

- \blacksquare s is a concrete binary distributed
- **2** α is the location parameter, and
- **3** β is the temperature parameter
- **4** z is the hard concrete distribution.
- **5** we stretch $s \to \bar{s}$ into the range (γ, ζ) where $\zeta < 0$ and $\gamma > 1$.

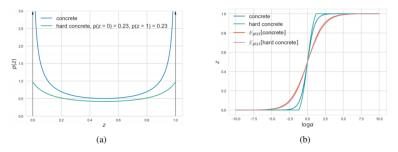


Figure 2: (a) The binary concrete distribution with location $\log \alpha = 0$ and temperature $\beta = 0.5$ and the hard concrete equivalent distribution obtained by stretching the concrete distribution to $(\gamma = -0.1, \zeta = 1.1)$ and then applying a hard-sigmoid. Under this specification the hard concrete distribution assigns, roughly, half of its mass to $\{0, 1\}$ and the rest to (0, 1). (b) The expected value of the afforementioned concrete and hard concrete gate as a function of the location $\log \alpha$, obtained by averaging 10000 samples. We also added the value of the gates obtained by removing the noise entirely. We can see that the noise smooths the hard-sigmoid to a sigmoid on average.

Figure: Figure 2 from lousizos et al

From earlier, we had $1 - Q_{\phi}(\mathbf{s} \leq \mathbf{0})$ in L_0 complexity loss of the objective function. Now, if the random variable is hard concrete, then we can say:

$$1 - Q_{\phi}(\mathbf{s} \leq \mathbf{0}) = \text{Sigmoid}(\log \alpha - \beta \log \frac{-\gamma}{\zeta})$$

During test time, the authors use the following for the gate:

$$\hat{\mathbf{z}} = \min(\mathbf{1}, \max(\mathbf{0}, \operatorname{Sigmoid}(\log \boldsymbol{\alpha})(\zeta - \gamma) + \gamma)) \text{ and } \boldsymbol{\theta}^* = \tilde{\boldsymbol{\theta}^*} \odot \hat{\mathbf{z}}$$

Experiments - MNIST Classification and Sparsification

Network & size	Method	Pruned architecture	Error (%)
MLP	Sparse VD (Molchanov et al., 2017)	512-114-72	1.8
784-300-100	BC-GNJ (Louizos et al., 2017)	278-98-13	1.8
	BC-GHS (Louizos et al., 2017)	311-86-14	1.8
	$L_{0_{hc}}, \lambda = 0.1/N$	219-214-100	1.4
	$L_{0_{hc}}, \lambda$ sep.	266-88-33	1.8
LeNet-5-Caffe	Sparse VD (Molchanov et al., 2017)	14-19-242-131	1.0
20-50-800-500	GL (Wen et al., 2016)	3-12-192-500	1.0
	SBP (Neklyudov et al., 2017)	3-18-284-283	0.9
	BC-GNJ (Louizos et al., 2017)	8-13-88-13	1.0
	BC-GHS (Louizos et al., 2017)	5-10-76-16	1.0
	$L_{0_{hc}}, \lambda = 0.1/N$	20-25-45-462	0.9
	$L_{0_{hc}}, \lambda$ sep.	9-18-65-25	1.0

Experiments - MNIST Classification

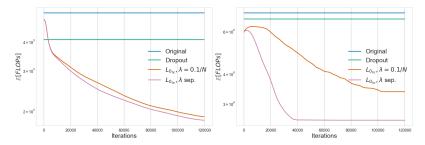


Figure: Expected FLOPs. Left is the MLP. Right is the LeNet-5

Network	CIFAR-10	CIFAR-100
original-ResNet-110 (He et al., 2016a) pre-act-ResNet-110 (He et al., 2016b)	6.43 6.37	25.16
WRN-28-10 (Zagoruyko & Komodakis, 2016) WRN-28-10-dropout (Zagoruyko & Komodakis, 2016)	4.00 3.89	21.18 18.85
$ \begin{array}{l} {\rm WRN\text{-}28\text{-}10\text{-}} L_{0_{hc}}, \lambda = 0.001/N \\ {\rm WRN\text{-}28\text{-}10\text{-}} L_{0_{hc}}, \lambda = 0.002/N \end{array} $	3.83 3.93	18.75 19.04

Experiments - CIFAR Classification

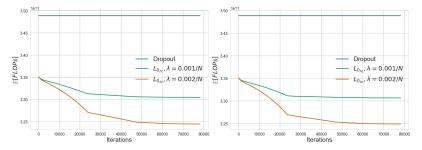


Figure: Expected FLOPs of WRN at CIFAR 10 (left) & 100 (right)

Discussion

- **1** L_0 penalty can save memory and computation
- $\mathbf{2}$ L_0 regularization lead to competitive predictive accuracy and stability

Future Work

 \blacksquare Adopt a full Bayesian treatment over the parameter θ

THANK YOU ...