Thinking Fast and Slow with
Deep Learning and Tree

Search

Thomas Anthony, Zheng Tian, and David Barber
University College London

Alex Adam and Fartash Faghri
CSC2547

Hex

Figure 1: A 5 X 5 Hex game, won by white. Figure from Huang et al. [8].

What is MCTS

e Tree search algo that addresses limitations of Alpha-Beta Search

e Alpha-Beta worst case explores O(B”*D) nodes

e MCTS approximates Alpha-Beta by exploring promising actions and using
simulations

1. Select nodes accordingto 2 4. In N;

2. Atleaf node i "

a. If node has not been explored, simulate until end of game
b. If node has been explored, add child states to tree, then simulate from random child state

3. Update UCT values of nodes along path from leaf to root

MCTS in Action

Selection 7

The selection function is
applied recursively until
a leaf node is reached

- Expansion

One or more nodes
are created

Repeated X times

- Simulation

One simulated
game is played

- Backpropagation

The result of this game is
backpropagated in the tree

Why not REINFORCE?

Maximize the expected reward: 4JTN7T [R] — ‘Lﬂ- [’I“(S7 CL)]

Gradient estimator:

§REINFOROE r(s,a)] = E;|r(s,a)Vglogm(als,)]

Find policy 7'('(@‘37 (9) that maximizes the expected reward.

Why not REINFORCE?

Challenges:

e \We can only use differentiable policies W(&’S, (9) (Hence use MCTS!)
e High variance of REINFORCE
e Need to compute ’I“(S, a) efficiently

o Solution 1: Do roll-outs to compute exactly (with a bit of MCTS)
o Solution 2: Approximate r(s, a) with a neural network called Value Network

GREINFORCE[. (¢ V] = B, [r(s, a)Vy log 7(als, 0)]

Imitation Learning

e00000

Consists of an expert and an apprentice
Apprentice tries to mimic expert

Expert

ANYTHING

YOU CAN DO

BETTER

Apprentice

Policy network

P,y @ls)

Imitation Learning Limits

e The apprentice will never exceed performance of expert

e Nothing can beat tree search given infinite resources and
time

e In many domains, like game playing, expert might not be
good enough

Fail

Exlt Pseudocode

Algorithm 1 Expert Iteration

1: 7 = initial_policy()

2: my = build_expert(mg)

3: for1=1;1 < max_iterations; i++ do

4: S; = sample_self_play(7;_1)

5 D; = {(s, imitation_learning_target(7}_{(s)))|s € S;}
6 m; = train_policy(D);)

7 m; = build_expert(;)

8: end for

The Minimal Policy Improvement Technique

MCTS as a policy improvement operator z(p)
Define the goal of learning as finding policy p* s.t. I(P*) — p*_

Gradient descent to solve this:) +’“’(P)a_g

Instead of minimizing the norm of z — p minimize: £(¥) = KL(z||p,) = =" logp, —

Learning Targets

e Chosen-action Targets (CAT) loss: ECAT = — log[ﬂ'(a*|3)]

Where g* = argmaxa(n(s, CL)) is the move selected by MCTS.

n(s,a)
e Tree-Policy Targets (TPT) loss: Ltpr = — Z n(;) log[m(als)]
a
Where n(s, a) is the number of times an edge has been traversed.

Expert Improvement

Upper confidence bounds for trees: UCT(s, a) = r(s,a) 4 Cb\/logn(s)

n(s,a)

Bias MCTS tree policy: UCTp_nn(s,a) = UCT(s,a) + w,

n(s,a) +

Value Network and AlphaGo Zero

Value Networks can do better than random rollouts if trained with enough data

Ly = —zloglV(s)] — (1 —2)log|l —V(s)]
AlphaGo Zero is very similar with a slight difference in the loss function

(p,v)=f,(s) and I=(z—v)? — =" logp+ c||0|]

Results: ExIt vs REINFORCE

—e— Online ExIt (exponential)
500 - Online ExIt (buffer)

—e— Batch ExIt
400 4 —*— REINFORCE

300 A

200 A

Elo Rating

100 A

—100 A

—200 A

0:0 0f5 1.'0 1:5 2?0
Neural Network Evaluations 1e9
Figure 2: Elo ratings of policy gradient network and EXIT networks through training. Values are the
average of 5 training runs, shaded areas represent 90% confidence intervals. Time is measured by
number of neural network evaluations made. Elo calculated with BayesElo [14]

Results: Value and Policy ExIt vs MoOHEX

1500 A - _K/
=
o -
1250 A _— g
”w
_______________________________ (O ——
1000 A
'g‘ 750 A
=
©
<
5 500 A pei
_/
250 4
Policy ExIt (Expert)
0- —e— Policy ExIt (Apprentice)
=x»= Policy & Value ExIt (Expert)
—eo— Policy & Value ExIt (Apprentice)
~2501 == MoHex

108 10° 1010
Neural Network Evaluations (log scale)

Figure 3: Apprentices and experts in distributed online EXIT, with and without neural network value
estimation. MOHEXs rating (10,000 iterations per move) is shown by the black dashed line.

References

e Anthony, Thomas, Zheng Tian, and David Barber. "Thinking fast and slow
with deep learning and tree search." Advances in Neural Information
Processing Systems. 2017.

e Silver, David, et al. "Mastering the game of go without human knowledge."
Nature 550.7676 (2017): 354.

e http://www.inference.vc/alphago-zero-policy-improvement-and-vector-fields/

e Farquhar, Gregory, et al. "TreeQN and ATreeC: Differentiable Tree Planning
for Deep Reinforcement Learning." arXiv preprint arXiv:1710.11417 (2017).

http://www.inference.vc/alphago-zero-policy-improvement-and-vector-fields/

