Discovering and Exploiting Additive Structure for Bayesian Optimization

Jacob R. Gardner Department of Computer Science Cornell University jrg365@cornell.edu Chuan Guo Department of Computer Science Cornell University cg563@cornell.edu

Kilian Q. Weinberger Department of Computer Science Cornell University kqw4@cornell.edu Roman Garnett Computer Science and Engineering Washington University in St. Louis garnett@wustl.edu Roger Grosse Department of Computer Science University of Toronto rgrosse@cs.toronto.edu

Hyperparameter Search

- Most methods in machine learning require hyperparameters
 - Regularization parameters for linear regression, neural network layers, neighbors in kNN, maximum tree depth, etc.
- Performance can crucially depend on their values think unregularized linear regression with 100,000 predictors or kNN with k = n
- Hyperparameters need to be set properly for optimal or even acceptable performance

Difficulties with hyperparameter optimization

Objective function unknown, no gradients, really expensive to evaluate

Typical solutions

• Grid search, random search, Bayesian optimization

Bayesian Optimization

Bayesian Optimization

Pros		Cons
Smarter decisions lead to faster convergence		Implementation is not easy
bigm) DataRobot	iapidminer	Dependent on own hyperparameters
Used in practice		KEY ISSUE Can't really be used in high dimension
PredictionIC	™ Wise.io	(exponential complexity) What to do?

EXPLOIT ADDITIVE STRUCTURE

imoflip com

Objective Function Structure Types

Structure	Example	Complexity	
Fully Dependent	$f(x) = x_1 x_2 x_3 x_4 x_5$	Exponential	
Fully Independent	$f(x) = x_1 + x_2 + x_3 + x_4 + x_5$	Linear	
Mixed	$f(x) = x_1 x_2 x_3 + x_4 + x_5$	Subexponential	
Knowing additive structure gives exponential reduction in complexity (Kandasamy et. al 2015)			

Bayesian Optimization Flow

1

2

3

5

- Get initial sample from objective function
- Update posterior (refit kernel)
- Optimize acquisition function
- Sample objective function at point x^{*}
- Repeat until satisfied

Bayesian Optimization Flow, Structure Discovery

- Get initial sample from objective function
- 2
- Discover objective function structure
- 2.1
- $M_k = [1,2,3][4][5]$

Sample model (partition)

- 2.2
- Fit additive kernel
 - $K_k = K(x_{123}, x_{123}) + K(x_4) + K(x_5)$
- Optimize acquisition function for x_{k}^{*}
- Repeat k times (50 in the paper)
- 3
- Set \mathbf{x}^* to be the point from $(\mathbf{x}_1, ..., \mathbf{x}_k)$ that maximizes marginalized acquisition function $p(f(\mathbf{x}^*) \mid \mathcal{D}, \mathbf{x}^*) \approx \frac{1}{k} \sum_{j=1}^k p(f(\mathbf{x}^*) \mid \mathcal{D}, \mathbf{x}^*, \mathcal{M}_j)$
- 4

5

Repeat until satisfied

Sample objective function at point x^{*}

Metropolis-Hastings Model Sampling

Accept sample with probability $A(\mathcal{M}' \mid \mathcal{M}_j) = \min\left(1, \frac{p(\mathbf{y}_i \mid \mathbf{X}_i, \mathcal{M}')g(\mathcal{M}_j \mid \mathcal{M}')}{p(\mathbf{y}_i \mid \mathbf{X}_i, \mathcal{M}_j)g(\mathcal{M}' \mid \mathcal{M}_j)}\right)$

Results, Simulation

Stybtang(x) =
$$\frac{1}{2} \sum_{i=1}^{d} x_i^4 - 16x_i^2 + 5x_i$$

Michalewicz(
$$\mathbf{x}$$
) = $-\sum_{i=1}^{d} \sin(x_i) \sin^{2m}\left(\frac{ix_i}{\pi}\right)$

Results, Simulation

10d Transformed Styblinski-Tang Bayesopt

Number of Iterations

Results, Real Data

Results, Real Data

Matrix Completion Tuning

Conclusion

- Bayesian optimization can select optimal hyperparameter settings with fewer iterations
- ...but is very slow in high dimensions (over 100 hyperparameters)
- One possible solution exploit additive structure
- Works very well when additive structure is present, not much worse when it isn't
- Can be a powerful extension to Auto ML applications
- Not free if the objective function is not too expensive this can be slower
 - Need to evaluate k extra models but each model simpler
- Doesn't solve all the problems high dimensionality still a problem, but now less so