Deep Reinforcement
Learning

Outline

Overview of Reinforcement Learning

Policy Search

Policy Gradient and Gradient Estimators

Q-prop: Sample Efficient Policy Gradient and an Off-policy Critic
Model Based Planning in Discrete Action Space

o ks wwh =

Note: These slides largely derive from David Silver’s video lectures + slides

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Reinforcement Learning 101

Agent Entity interacting with its
surroundings

Environment Surroundings in which the
agent interacts with

r_eward action

State Representation of agent sl | Ut

and environment res
configuration s Environment

Reward Measure of success for
positive feedback

Reinforcement Learning 101

Policy Map of the agent’s actions given the state. Deterministic policy: a = (s)
Stochastic policy: m(als) = P[A; = a|S; = s]

V(S)= Value | Expectation Value of the future reward
Function given a specific policy, starting at state Ve(s) = Er [Res1 + YRey2 + Y’ Rega + .. | Se =]

S(t)
Q = Action- Expectation value of the future reward B o
Value following a specific policy, after a specific Ir(5,2) = Bx [Revs +7x(Ser1, Acna) | e = 5, A = 2]
Function action at a specific state.
Model Predicts what the environment will do P2, =P[Sti1=5 | St =5, A = 4]

next. R =E[Rey1 | St =s,Ac = 3

Policy Evaluation

Run policy iteratively in environment while updating Q(a,s) or V(s), until convergence:

Model Based Evaluation Model Free Evalutation
Learn Model from experience (Supervised Learning). Learn from experience (sampling). Greedy
Learn Value function V(s) from model. policy over V(s) requires

SlaAl — R2552
52,A2 = R3, 83

7'(s) = argmax R2 + Pa, V(5)

St1 ~ Pp(St+1 | St, At) acA

: Rt+1 = Rn(Rt+1 | St,At)
St-1,AT-1— R7,S1 Evaluation over action space: Q= Qn

Pros: Efficiently learns model and can
reason about model uncertainty
Cons: two sources of error from model and

approximated V(s)

Model Based

reward

Model Free

Model World
(Map)

action

A

t

Policy Evaluation Method: Monte Carlo (MC) versus
Temporal Dynamics (TD)

Monte Carlo Temporal Dynamics

Return

G = Rev1 +YResa + .+ 7T Ry Learns directly from incomplete episodes
of experience from bootstrapping.

Update Value toward actual return after

episode tradjector
i e V(Se) V(Se) +a(Res +7V(5e1) — V(S50)

V(S:) <+ V(S:) + a(G: — V(S:))
- Better for Markov

- Low bais, low variance
- Offline and Online

- Better for non-Markov
- High Variance, no bias
- Only for offline

Policy Improvement

Update policy from the V(s) and/or Q(a,s) after iterated policy
evalutation

Epsilon-Greedy

m Simplest idea for ensuring continual exploration
m All m actions are tried with non-zero probability
m With probability 1 — € choose the greedy action

m With probability € choose an action at random

acA

(al9) e/m+1—e if a* =argmax Q(s, a)
m(als) =
e/m otherwise

Generalized Policy Iteration V(s)

evaluation

o %

nt—>greedy (V)

starting

improvement

Policy evaluation Estimate v,
lterative policy evaluation

Policy improvement Generate 7/ > 7
Greedy policy improvement

Generalized Policy lteration Q(a,s)

Starting

Policy evaluation Monte-Carlo policy evaluation, Q = g,

Policy improvement Greedy policy improvement?

Function Approximation for Large MDP Systems

Problem: Recall every state(s) has an entry V(s) and every action, state pair has
an entry Q(a,s).

Solution: Estimate value function with ~ ~

" , _ V(s,w) = vi(s)
approximation function. Generalize from
seen states to unseen states and update or Q(S, d, W) ~ qﬂ'(sa 3)

parameter w using MC or TD learning.

- -

Vuw?(S,w) = x(5)

Aw = a(v;(S) — 7(S,w))x(S)

On-policy and Off-policy Control Methods

e On-policy methods: the agent learns from experiences drawn from its own

behavioural policy.
o Example of on-policy: SARSA, TRPO

e Off-policy methods: the agent optimizes its own policy using samples from

another target policy (ex: an agent learning by observing a human).
o Example of off-policy: Q-learning (next slide)

o Qualities: Can provide sample efficiency, but can lack convergence guarantees and suffer
from instability issues.

Off-policy example: Q-learning

e Target policy acts greedily, behaviour acts epsilon-greedily.
e Bootstrap w.r.t. the target policy in the Q update assignment.

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’

Q(S, A) + Q(S,A) + a[R + ymax, Q(S’,a) — Q(S, A)]

S« S

until S is terminal

Policy Gradient Methods

|ldea: Use function approximation on the policy:

Policy Gradient Methods: Pros / Cons

Advantages:

e Better convergence properties (updating tends to be smoother)
e Effective in high-dimensional/cts action spaces (avoid working out max)
e Can learn stochastic policies (more on this later)

Disadvantages:

e Converge often to local minima
e Can be inefficient to evaluate policy + have high variance (max operation can
be viewed as more aggressive)

Policy Gradient Theorem

Assuming our policy is differentiable, can prove that (Sutton, 1999):

1Vylogmy(s,a)Q™ (s, a)

Useful formulation that moves the gradient past the distribution over states,
providing model-free gradient estimator.

Monte Carlo Policy Gradient Methods

Most straightforward approach = REINFORCE:
function REINFORCE
Initialise 6 arbitrarily
for each episode {si1,a1,rn,...,sT_1,a7_1,r7} ~ 7™y dO
fort=1to T —1do
0 < 0+ aVglog mo(st, ar)ve

end for
end for
return 6
end function

Problems:

e High variance (can get rid of some through control variate)
e Sample intensive (attempts to use off-policy data have failed).
e Not online (have to calculate the return)

Policy Gradient with Function Approximation

Approximate the gradient with a critic:

VJ(O) ~E,|Vylogmy(s,a)Q,(s,a)

/\H

e Employ techniques from before (e.g. Q-learning) to update Q. Off-policy
techniques provide sample efficiency.

e Can have reduced variance compared to REINFORCE (replacing full-step mc
return with for example one-step TD return).

Value Function Policy

Deterministic vs. Stochastic Policies

Stochastic policies:

e (Can break symmetry in aliased features
e |f on-policy, get exploration

Deterministic policies:

e Bad in POMDP/adversarial settings
e More efficient

Why is deterministic more efficient?

e Recall policy gradient theorem:

e \With stochastic policy gradient, the inner integral (red box in 2) is computed
by sampling a high dimensional action space. In contrast, the deterministic
policy gradient can be computed immediately in closed form.

Vot (o) = [£(5)Viott() Va@(5,0) o)05

=Es~p"‘ [V()#U(s) VGQ“(S,Q)IU p..(s)] (9)

Q-Prop: Sample Efficient Policy Gradient
with an Off-Policy Critic

Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E. Turner, Sergey
Levine

Q-Prop: Relevance

e Challenges
o On-policy estimators: sample efficiency, high variance with MC PG methods

o Off-policy estimators: unstable results, non-convergence emanating from bias

e Related Recent Work

o Variance reduction in gradient estimators is an ongoing active research area..

o Silver, Schulman etc. TRPO, DDPG

Q-Prop: Main Contributions

e Q-prop provides a new approach for using off-policy data to reduce variance
in an on-policy gradient estimator without introducing further bias.

e Coalesce prior advances in dichotomous lines of research since Q-Prop uses
both on-policy updates and off-policy critic learning.

Q-Prop: Background

e Monte Carlo (MC) Policy Gradient (PG) Methods:

VoJ(8) = Ex[Y. Vologma(as,)VR] = Ex[Y. ¥'VologTo(arls) (R —b(s)), (1) Va(#1) = ExlR] = Erg (oo [Cn 81, 01)]

t=0 =0

Qn(anat) = "(31’04) + ‘}’IE,;[R, ¢ l] = r(slaal) + YIEp(u,. ||u,,u,)[Vﬂ(3u l)]
VeJ(0) = Ey ~px(-),ai~x(-|8r) Velogme(a:|s:)(R: —b(s:))].) A,,(s,,a,) = Qﬂ:(sual) - Vn(sr)~

e PG with Function Approximation or Actor-Critic Methods
o Policy evaluation step: fit a critic @_w (using TD learning for e.g.) for the current policy =
o Policy improvement step: optimize policy m against critic estimated Q_w
o Significant gains in sample efficiency using off-policy (memory replay) TD learning for the critic

s E.g. method: Deep Deterministic Policy Gradient (DDPG) [Silver et. al. 2014], used in Q-Prop
o (Biased) Gradient (in policy improvement phase) given by:

VeJ(0) ~ Egnpy() [VaQu(8r, @) |a=pg(s,) Vora(s:)]

W= argn};i'nIES:"-pB(',:'-(J-r"‘ﬁ('b:;‘ [(r(shal) + YQ(sl*l 5“9(3’+|)) - Q“'(s” 0.1))2:
6 = argmeiiXEB:,\,pﬁ(‘:.:Qw(sts“f?(s!)):

Q-Prop: Estimator

® |[ntuition: Q-Prop is simply a Monte Carlo PG estimator with a special form of control variate. Uses
the first-order Taylor expansion of critic’s Q,, as baseline control variate.

VoJ(6) =E,, z[Volog Tg(a;|s,)(Q(s:,a;) — 0(81,a,)] +Ep, [VaQu(8:,@) | oy (s) Vorra(s:)]-

Q)

@] In terms of advantages for the basic derivation: VoJ(8) =E,_ x[Vologmg(a|s,)(A(s;,a:) — Au(8:,a:)] + Ep. [VaQu(8:,0)| ae g (s,) Vorra(s:)]
A(s,,a,) = Q-(Sy,a[) —]Exg :Q-(Sr_-az): = VaQw(Sre a) a—#g[s;}(a'f _”S(Sf))'
®)

® For adapting Q-Prop, weighing variable n(s;) is added:

VeJ(6) ZIEPA.R[VS log 7y (ar|3l)("§(3nar) - fl(a:) w(fnal):

+E,, aQw(sna) a -,,U(,,]Veﬂe(-’:).

® Variance of the estimator is given using a surrogate variance measure for tractability:

1D

n*(s;) = Cova, (A,A)/Varg, (A)

® Optimal state dependent factor n(s;) is computed as:

Adaptive Q-Prop and Variants

® The various variants of Q-Prop are obtained using variants of the control-variate modulating variable
n(se)-

® Adaptive Q-Prop: using optimal n*(s,) for variance reduction (Eq. 11): KNeuESR G Ry sy W)L\ S0-y)

o Achieves variance reduction if at any state, actor and critic advantage functions are correlated.

® Conservative Q-Prop (c-Q-Prop): n(s;) = 1 if there is positive covariance, else 0. Effectively
disables the control variate for some samples of the states.

® Aggressive Q-Prop (a-Q-Prop): n(s;) = sign(Cov(4,4)). Control variates are always used
regardless of covariance relation

Q-Prop: Algorithm

Algorithm 1 Adaptive Q-Prop

1: Initialize w for critic Q,,, @ for stochastic policy g, and replay buffer % < 0.
2: repeat

3 fore=1,...,E do > Collect E episodes of on-policy experience using 7y
4 S0,e ™~ [7(8())

5 forr=0,....T —1do

6: are~To(-|St.e), Stv1.e ~P(-|StesQre), 1.0 =1(Ste,re)

7 Add batch data Z = {s¢.7.1-£,Q0.7—1.1:E,70:T—1.1:E } to replay buffer %

8 Take E - T gradient steps on Q,, using % and 7y

9 Fit V (s;) using #

10: Compute A, , using GAE(A) and A, , using Eq. 7
11: Set 1; . based on Section 3.2

12: Compute and center the learning signals /; , = Ao — Nr.eAre
13: Compute VG‘](G) ~ [-% Ze Zt VO log g (at.e |3t.e)lt.e + Tlt.eanw(Sr.es a') |a:p9(s,_‘.)V6u9 (Sr.e)
14: Take a gradient step on 7y using VgJ(8), optionally with a trust-region constraint using %

15: until 7y converges.

27

Q-Prop: Experiments and Evaluations

6000 5000
5000 4000
c 4000 c 3000
3 3
< 3000 < 2000
> :)
@ 2000 @ 1000
> S o e TRPO-01000
< 1000 < 0 v e TRPO-05000
..... TRPO-05000 g <=+ TRPO-25000
—— TR-Q-Prop-05000 ~— TR-c-Q-Prop-01000
0]/ —— TR-a-Q-Prop-05000 -1000 = TR-c-Q-Prop-05000
TR-c-Q-Prop-05000 TR-c-Q-Prop-25000
-1000 -2000
0 2000 4000 6000 8000 10000 12000 0 500 1000 1500 2000 2500 3000 3500 4000 4500
Episodes Episodes
(a) Standard Q-Prop vs adaptive variants. (b) Conservative Q-Prop vs TRPO across batch sizes.

All variants of Q-Prop substantially outperform TRPO in terms of sample efficiency

Q-Prop: Evaluations Across Algorithms

8000
- - N, .
fn™ T ORI AT e L
6000 e £ Vs
c .
2 4000
7}
m -
s
g 2000 . ._':-...
g G =+« DDPG-r0.1
< A0 il L DDPG-r1.0
=+ VPG-05000
----- TRPO-05000
= Vv-c-Q-Prop-05000
-2000 —— TR-c-Q-Prop-05000
0 1000 2000 3000 4000 5000 6000

Episodes

(a) Comparing algorithms on HalfCheetah-v1.

AverageReturn

500 pffivsninnnnl T T TRPQ25000.
= TR-c-Q- Prop-05000

0 5000 10000 15000 20000 25000
Episodes

(b) Comparing algorithms on Humanoid-v1.

TR-c-Q-Prop outperforms VPG, TRPO. DDPG is inconsistent (dependent on

hyper-parameter settings (like reward scale — r — here)

Q-Prop: Evaluations Across Domains

Q-Prop, TRPO and DDPG results showing the max average rewards attained in the first 30k episodes
and the episodes to cross specific reward thresholds.

TR-c-Q-Prop
Domain Threshold | MaxReturn. Episodes | MaxReturn Epsisodes | MaxReturn Episodes
Ant 3534 4975 4239 13825
HalfCheetah 4811 20785 4734 26370

Hopper 2957 5945 2486 5715
Humanoid >3492 14750 918 >30000
Reacher -6.0 2060 -6.7 2840
Swimmer 103 2045 110 3025

Walker 4030 3685 3567 18875

Take away: Q-Prop often learns more sample efficiently than TRPO and can solve difficult domains such
as Humanoid better than DDPG.

Q-Prop: Limitations

e Speed: the compute time per episode is bound by the critic training at each
iteration. Poses a limitation of usage with fast simulators where data

collection is very fast.
o Possible work around: asynchronous data collection and policy updates to fit Q,,
e Robustness to Bad Critics: estimating off-policy critic’s reliability is a
fundamental issue that requires further investigation.

o Possible work around: adopt more stable state-of-the-art critic learning techniques such as
Retrace (Munos et. al. 2016)

Q-Prop: Future Work

e Q-Prop was implemented using TRPO-GAE for this paper.

e Combining Q-Prop with other on-policy update schemes and off-policy critic
training methods is an interesting direction of future work.

Model-Based Planning In
Discrete Action Spaces

By: Mikael Henaff, William F. Whitney, Yann LeCun

Model-based Reinforcement Learning

Recall: model-based RL uses a learned
model of the world (i.e. how it changes as the
agent acts).

The model can then be used to devise a way
to get from a given state s, to a desired state
Sy, Via a sequence of actions.

This is in contrast to the model-free case,

which learns directly from states and rewards.

Benefits:

Model reusability (e.g. can
just change reward if task
changes)

Better sample complexity
(more informative error
signal)

In continuous case, can
optimize efficiently

Notation and Learning the Forward Model

0 : Learned forward model parameters Use example transitions
from the environment E
to learn the forward

model f by minimizing L

a=(ay,...,a;) : Sequence of actions

(s,a,s") ~ & : Environment transitions

f(s,a,0) : Predicted state from s after a

, E.g. f can be a neural
L(s,) : Loss function between states °

network

Learned model 9* — arg min D) [ﬁ(f(s, a, S/)7 S/)]

parameters: 0 (S,&,S’)NE

Planning in Model-based Reinforcement Learning

Goal: given f, find the sequence of actions a that takes us from a starting state s,
to a desired final state s;

a* = argmin L(f(so,a,), sr)

a

In the continuous case, this can be done via gradient descent in action space.

But what if the action space is discrete?

Problems in Discrete Action Spaces

Suppose our discrete space is
one-hot encoded with
dimension d

Action Space : A = {ey,...,e4}

- ltis too expensive to enumerate the tree of possibilities and find the optimal
path (reminiscent of classical Al search e.g. in games)

- If we treat A as a vector space and naively attempt continuous optimization, it
is likely that the resulting action will be invalid, i.e. not an allowed action

Can we somehow map this to a differentiable problem, more amenable to
optimization?

Handling Discreteness (l): Overview

Two approaches are used to ameliorate the problems caused by discreteness:

1. Softening the action space and relaxing the discrete optimization problem
allows back-propagation to be used with gradient descent

2. Biasing the algorithm to producing action vectors that are close to valid, by
additive noise (implicit) or an entropy penalty (explicit)

Handling Discreteness (ll): Soften & Relax

Define a new input space for the actions, defined by the d-dimensional simplex

Notice that we can get a softened action from
any real vector by taking its softmax

a; = o(xy)

Relaxing the optimization then gives (notice the x’s are not restricted):

argmin L(f(sg,0(x),), ss)

=21, TT)

Note: the softmax is applied element-wise

Handling Discreteness (lll): Optimization Bias

The paper considers 3 ways to push the “input” x,'s towards one-hot vectors
during the optimization procedure:

1. Add noise to the input x;'s

2. Add noise to the gradients (scaled version of 1.)

3. Add an explicit penalty to the loss function, given by the entropy of the
softened action H(sigma(x,))

This entropy is a good measure for how well this bias (or regularization) is working
(since low entropy means furthest from uniform, i.e. more concentration at one

value)

Why Does Adding Noise Help?

Adding noise to the inputs x, implicitly induces the following additional penalty to
the optimization objective:

Noise variance Encourage less sensitivity to inputs
(strength) (e.g. going to saturated softmax areas)

Also less sensitivity, by penalizing low loss but high
curvature (e.g. sharp or unstable local minima)

The Overall Planning Algorithm

Algorithm 1 Forward Planner

Require: Trained forward model f, initial state s(, desired final state s’, learning rate 7).

I: Initialize z; € R from N(0,0.1) fort = 1,..., 7.
cfori=1:Fkdo
re < 1 +efort=1,....7T. > Add noise to inputs
a; < o(xy) fort =1,....7T. > Compute action vectors
s < f(so,ai,...,ar,0) > Predict final state for this action sequence
Compute L(s, s’) and Vs > Forward and backprop through £
Compute Va, fort = 1,..., T > Backprop through f using Vs
Compute Va; fort =1,....7T > Backprop through o using Va;
¢ < ADAM(xy, Vay,n) fort =1,...,7T. > Update using ADAM

. end for

cap < o(xg) fort =1,...,7T.

Dap <—argming oo oallae—egf[fort =1, T, > Quantize actions to one-hot vectors
3: return aq,....ar

2

3:
4.
S:
6:
7
8:

Evaluation: Two New Discrete Planning Tasks

Based on classic Q&A tasks, but “reversed” (here we predict a from s;)
(A) Navigate: find discrete moving and turning sequence to reach target position
(B) Transport: reproduce object locations by agent picking up objects & moving

(A) NAVIGATION TASK (B) TRANSPORT TASK

QA TASK PLANNING TASK QA TASK PLANNING TASK

AGENT1 1s AT (8,4) AGENT1 1s AT (8,4) OBJECT1l IS AT LOCATION3 OBJECT1 IS AT LOCATION3
AGENT1 FACEsS-E AGENT1 FACEsS-E OBJECT2 IS AT LOCATION4 OBJECT2 IS AT LOCATION4
AGENT1 MOVES-2 OBJECT3 IS AT LOCATION2 OBJECT3 IS AT LOCATION2
AGENT1 MOVES-5 JASON WENT TO LOCATION3 JASON WENT TO LOCATION3
AGENT1 FACES-S JASON PICKED UP THE OBJECTS | *

AGENT1 MOVES-5 JASON WENT TO LOCATION2 *

AGENT1 FACES-S JASON PICKED UP THE OBJECTS | *

AGENT1 MOVEs-1 JASON WENT TO LOCATION1 *

AGENT1 MOVEs-1 Q1: WHERE IS OBJECT1? Q1: WHERE IS OBJECT1?
AGENT1 MOVEs-1 Q2: WHERE IS OBJECT27 Q2: WHERE IS OBJECT27
Ql: WHERE IS AGENT1? WHERE IS AGENT1? Q3: WHERE IS OBJECT37 Q3: WHERE IS OBJECT37
Al: % (10,1) Al: Al: vLocaTION1

A2: A2: LocATION4

A3: A3: LOCATION1

B ¥ K K K K K X ¥

1:
1:

Results (1): Entropy and Loss over Time

Empirically, adding noise
directly to the inputs seems to
be the best of the 3 implicit
loss regularization methods
(possibly helps avoid local
minima too)

One can also see that the
entropy decreases over time,
when regularization is present

(right)

Navigation Task

—No Regularization

—Entropy Penalty
Input Noise

—Gradient noise

Transport Task

—No Regularization

—Entropy Penalty
Input Noise

—Gradient noise

60 80

lterations

20

Navigation Task

—No Regularization

—Entropy Penalty
Input Noise

—Gradient noise

40 60 80

lterations

Results (Il): Performance Comparison

The method (the Forward Planner) was compared to Q-learning and an imitation
learner. It does better at generalizing for longer sequences (outside training data)

Issue: the Forward Planner takes much longer to choose (i.e. plan) its actions. But
if even if given less time, it still performs reasonably well.

=&-Forward Planner
=& |mitation Learner
= Q-learner

Sensitivity

>
3}
©
&
>
o
s}
<

=6—Forward Planner

=de=|mitation Learner

== Q-learner

10 25 50 100
lterations

(b) Transport Task (13naa

10 25 50 100 250 500 1000
lterations

(a) Navigation Task (7'naz = 10)
Figure 2: Performance vs. Planning Time

Summary of Paper

- Devise a way to perform model-based planning in discrete actions spaces via

gradient-based optimization
- Combines: (1) relaxation of the problem and action space, and (2) a penalty that biases the
algorithm naturally towards preferring low entropy (soft) actions

- Defined two new discrete RL tasks and demonstrated their model’s state-of-
the-art performance on them

Thank you

Appendix

REINFORCE

VeJ(0) = En[i Vologmg(a:|s,)Y Ri] = En[i Y Velogmg(as|s:) (R —b(s))], (1)

t=0 =0

Related Theorems

e Stochastic Policy Gradient Theorem [Sutton et. al., 1999]

Vo (m5) = /5 o7 (s) /A Voro(als)@~ (s, a)dads

= Es~p= a~ns [V logme(als)Q™ (s,a)]
e Deterministic Policy Gradient Theorem [Silver et. al. 2015]

Vo (us) = [£(5)Vopo(s) Va@(8,)], s

= Eoupe Vorto(s) VaQ(5,0) ey, i0)] ©

Open Al Gym MujoCo

e Humanoid Demo

o https://www.youtube.com/watch?v=SHLuf2ZBQSw

e Half Cheetah

o https://www.youtube.com/watch?v=EzBmQsiUWB

Estimating the Advantage Function

m The advantage function can significantly reduce variance of
policy gradient

m So the critic should really estimate the advantage function

m For example, by estimating both V™ (s) and Q™ (s, a)

= Using two function approximators and two parameter vectors,

Vi(s) = V™(s)
Qu(s,a) = Q™ (s, a)
A(s,a) = Qu(s,a) — Vi(s)

» And updating both value functions by e.g. TD learning

Source: David Silver Lecture slides

Deep Deterministic Policy Gradient (DDPG)

e Policy Gradient Theorem (Sutton et. al. 1999):

e \With stochastic policy gradient, the inner integral (red box in 2) is computed
by sampling a high dimensional action space. In contrast, the deterministic
policy gradient can be computed immediately in closed form.

Vot (o) = [£(5)Viott() Va@(5,0) o)05

=Es~p"‘ [V()#U(s) VGQ“(S,Q)IU p..(s)] (9)

