
Deep Reinforcement 
Learning 
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Outline 

1.  Overview of Reinforcement Learning 
2.  Policy Search 
3.  Policy Gradient and Gradient Estimators  
4.  Q-prop: Sample Efficient Policy Gradient and an Off-policy Critic 
5.  Model Based Planning in Discrete Action Space 

Note: These slides largely derive from David Silver’s video lectures + slides 

 http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html 
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Reinforcement Learning 101 

Agent Entity interacting with its 
surroundings 

Environment Surroundings  in which the 
agent interacts with 

State Representation of agent 
and environment 
configuration 

Reward Measure of success for 
positive feedback 
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Reinforcement Learning 101 
 

Policy Map of the agent’s actions given the state. 

V(S)= Value 
Function 

Expectation Value  of the future reward 
given a specific policy, starting at state 
S(t) 

Q = Action-
Value 
Function 

Expectation value  of the future reward 
following a specific policy, after a specific 
action at a specific state.   

Model Predicts what the environment will do 
next.  
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Policy Evaluation 
Run policy iteratively in environment while updating Q(a,s) or V(s), until convergence: 

 

 
 

 

 

Model Based Evaluation Model Free Evalutation 

Learn from experience (sampling). Greedy 
policy over V(s) requires model 

Evaluation over action space:   

Learn Model from experience (Supervised Learning). 
Learn Value function V(s) from model. 

Pros: Efficiently learns model and can 
reason about model uncertainty 
Cons: two sources of error from model and 
approximated V(s)  
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Real World Model World 
      (Map) 

Model Based  Model Free  
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Policy Evaluation Method: Monte Carlo (MC) versus 
Temporal Dynamics (TD) 
Monte Carlo Temporal Dynamics 

-  Better for non-Markov  
-  High Variance, no bias 
-  Only for offline 

-  Better for Markov 
-  Low bais, low variance 
-  Offline and Online 

Update Value toward actual return after 
episode tradjectory 

Return  
Learns directly from incomplete episodes 
of experience from bootstrapping. 
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Policy Improvement  

 

 

 

 

 

Update policy from the V(s) and/or Q(a,s) after iterated policy 
evalutation 

Epsilon-Greedy 
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Generalized Policy Iteration V(s) 
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Generalized Policy Iteration Q(a,s) 
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Function Approximation for Large MDP Systems 

Problem: Recall every state(s) has an entry V(s) and every action, state pair has 
an entry Q(a,s). This is problematic for large systems with many state pairs. 

 

 

Solution: Estimate value function with 
approximation function. Generalize from 
seen states to unseen states and update 
parameter w using MC or TD learning. 
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On-policy and Off-policy Control Methods 

●  On-policy methods: the agent learns from experiences drawn from its own 
behavioural policy. 
○  Example of on-policy: SARSA, TRPO 

●  Off-policy methods: the agent optimizes its own policy using samples from 
another target policy (ex: an agent learning by observing a human). 
○  Example of off-policy: Q-learning (next slide) 

○  Qualities: Can provide sample efficiency, but can lack convergence guarantees and suffer 
from instability issues. 
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Off-policy example: Q-learning 

●  Target policy acts greedily, behaviour acts epsilon-greedily. 
●  Bootstrap w.r.t. the target policy in the Q update assignment. 
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Policy Gradient Methods 
 
Idea: Use function approximation on the policy: 

 

 

Given its parameterization, we can directly optimize the policy. Take gradient of: 
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Policy Gradient Methods: Pros / Cons 

Advantages: 

●  Better convergence properties (updating tends to be smoother) 
●  Effective in high-dimensional/cts action spaces (avoid working out max) 
●  Can learn stochastic policies (more on this later) 

Disadvantages: 

●  Converge often to local minima 
●  Can be inefficient to evaluate policy + have high variance (max operation can 

be viewed as more aggressive) 
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Policy Gradient Theorem 

Assuming our policy is differentiable, can prove that (Sutton, 1999): 

 

 

Useful formulation that moves the gradient past the distribution over states, 
providing model-free gradient estimator. 
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Monte Carlo Policy Gradient Methods 

Most straightforward approach = REINFORCE: 

 

 

 

Problems: 

●  High variance (can get rid of some through control variate) 
●  Sample intensive (attempts to use off-policy data have failed). 
●  Not online (have to calculate the return) 
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Policy Gradient with Function Approximation 

Approximate the gradient with a critic: 

 

●  Employ techniques from before (e.g. Q-learning) to update Q. Off-policy 
techniques provide sample efficiency. 

●  Can have reduced variance compared to REINFORCE (replacing full-step mc 
return with for example one-step TD return). 
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Deterministic vs. Stochastic Policies 

Stochastic policies: 

●  Can break symmetry in aliased features 
●  If on-policy, get exploration 

Deterministic policies: 

●  Bad in POMDP/adversarial settings 
●  More efficient 
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Why is deterministic more efficient? 

●  Recall policy gradient theorem: 
 
 

 
 
●  With stochastic policy gradient, the inner integral (red box in 2) is computed 

by sampling a high dimensional action space. In contrast, the deterministic 
policy gradient can be computed immediately in closed form. 
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Q-Prop: Sample Efficient Policy Gradient 
with an Off-Policy Critic 

Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E. Turner, Sergey 
Levine 
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Q-Prop: Relevance 

●  Challenges  

○  On-policy estimators: sample efficiency, high variance with MC PG methods 

○  Off-policy estimators: unstable results, non-convergence emanating from bias 

 

●  Related Recent Work 

○  Variance reduction in gradient estimators is an ongoing active research area..  

○  Silver, Schulman etc. TRPO, DDPG 
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Q-Prop: Main Contributions 

●  Q-prop provides a new approach for using off-policy data to reduce variance 
in an on-policy gradient estimator without introducing further bias. 

 
●  Coalesce prior advances in dichotomous lines of research since Q-Prop uses 

both on-policy updates and off-policy critic learning. 
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Q-Prop: Background 
●  Monte Carlo (MC) Policy Gradient (PG) Methods: 

 
 
 
●  PG with Function Approximation or Actor-Critic Methods 

○  Policy evaluation step: fit a critic Q_w (using TD learning for e.g.) for the current policy π 

○  Policy improvement step: optimize policy π against critic estimated Q_w 

○  Significant gains in sample efficiency using off-policy (memory replay) TD learning for the critic 
■  E.g. method: Deep Deterministic Policy Gradient (DDPG) [Silver et. al. 2014], used in Q-Prop 

●  (Biased) Gradient (in policy improvement phase) given by: 
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Q-Prop: Estimator 
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Adaptive Q-Prop and Variants 
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Q-Prop: Algorithm 
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Q-Prop: Experiments and Evaluations 

All variants of Q-Prop substantially outperform TRPO in terms of sample efficiency  
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Q-Prop: Evaluations Across Algorithms 

TR-c-Q-Prop outperforms VPG, TRPO. DDPG is inconsistent (dependent on 
hyper-parameter settings  (like reward scale – r – here) 
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Q-Prop: Evaluations Across Domains 

Take away: Q-Prop often learns more sample efficiently than TRPO and can solve difficult domains such 
as Humanoid better than DDPG. 

 

Q-Prop, TRPO and DDPG results showing the max average rewards attained in the first 30k episodes 
and the episodes to cross specific reward thresholds. 
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Q-Prop: Limitations 
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Q-Prop: Future Work 

●  Q-Prop was implemented using TRPO-GAE for this paper. 
 
●  Combining Q-Prop with other on-policy update schemes and off-policy critic 

training methods is an interesting direction of future work. 
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Model-Based Planning in 
Discrete Action Spaces 

By: Mikael Henaff, William F. Whitney, Yann LeCun 
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Model-based Reinforcement Learning 

Recall: model-based RL uses a learned 
model of the world (i.e. how it changes as the 
agent acts).  

The model can then be used to devise a way 
to get from a given state s0 to a desired state 
sf, via a sequence of actions. 

This is in contrast to the model-free case, 
which learns directly from states and rewards. 

Benefits: 

-  Model reusability (e.g. can 
just change reward if task 
changes) 

-  Better sample complexity 
(more informative error 
signal) 

-  In continuous case, can 
optimize efficiently 

34 



Notation and Learning the Forward Model 

Use example transitions 
from the environment E 
to learn the forward 
model f by minimizing L 

E.g. f can be a neural 
network 

Learned model 
parameters: 
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Planning in Model-based Reinforcement Learning 

Goal: given f, find the sequence of actions a that takes us from a starting state s0 
to a desired final state sf  

 

 

In the continuous case, this can be done via gradient descent in action space. 

 

But what if the action space is discrete?  
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Problems in Discrete Action Spaces 

-  It is too expensive to enumerate the tree of possibilities and find the optimal 
path (reminiscent of classical AI search e.g. in games) 

-  If we treat A as a vector space and naively attempt continuous optimization, it 
is likely that the resulting action will be invalid, i.e. not an allowed action 

 

Suppose our discrete space is 
one-hot encoded with 
dimension d 

 

Can we somehow map this to a differentiable problem, more amenable to 
optimization? 
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Handling Discreteness (I): Overview 

Two approaches are used to ameliorate the problems caused by discreteness: 

 

1.  Softening the action space and relaxing the discrete optimization problem 
allows back-propagation to be used with gradient descent 

 

2.  Biasing the algorithm to producing action vectors that are close to valid, by 
additive noise (implicit) or an entropy penalty (explicit) 
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Handling Discreteness (II): Soften & Relax 

Define a new input space for the actions, defined by the d-dimensional simplex 

Notice that we can get a softened action from 
any real vector by taking its softmax 

Relaxing the optimization then gives (notice the x’s are not restricted): 

Note: the softmax is applied element-wise 39 



Handling Discreteness (III): Optimization Bias 

The paper considers 3 ways to push the “input” xt’s towards one-hot vectors 
during the optimization procedure: 

1.  Add noise to the input xt‘s  
2.  Add noise to the gradients (scaled version of 1.) 
3.  Add an explicit penalty to the loss function, given by the entropy of the 

softened action H( sigma( xt ) ) 

This entropy is a good measure for how well this bias (or regularization) is working 
(since low entropy means furthest from uniform, i.e. more concentration at one 
value)  
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Why Does Adding Noise Help? 

Adding noise to the inputs xt implicitly induces the following additional penalty to 
the optimization objective: 

Also less sensitivity, by penalizing low loss but high 
curvature (e.g. sharp or unstable local minima) 

Encourage less sensitivity to inputs 
(e.g. going to saturated softmax areas) 

Noise variance 
(strength) 
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The Overall Planning Algorithm 
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Evaluation: Two New Discrete Planning Tasks 
Based on classic Q&A tasks, but “reversed” (here we predict a from sf) 
(A) Navigate: find discrete moving and turning sequence to reach target position 
(B) Transport: reproduce object locations by agent picking up objects & moving 
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Results (I): Entropy and Loss over Time 

Empirically, adding noise 
directly to the inputs seems to 
be the best of the 3 implicit 
loss regularization methods 
(possibly helps avoid local 
minima too) 

One can also see that the 
entropy decreases over time, 
when regularization is present 
(right) 
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Results (II): Performance Comparison 
The method (the Forward Planner) was compared to Q-learning and an imitation 
learner. It does better at generalizing for longer sequences (outside training data) 
 
Issue: the Forward Planner takes much longer to choose (i.e. plan) its actions. But 
if even if given less time, it still performs reasonably well. 
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Summary of Paper 

-  Devise a way to perform model-based planning in discrete actions spaces via 
gradient-based optimization 

-  Combines: (1) relaxation of the problem and action space, and (2) a penalty that biases the 
algorithm naturally towards preferring low entropy (soft) actions 

 

-  Defined two new discrete RL tasks and demonstrated their model’s state-of-
the-art performance on them 
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Thank you 
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Appendix 
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REINFORCE 
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Related Theorems   

●  Stochastic Policy Gradient Theorem [Sutton et. al., 1999] 
 
 
 
 
●  Deterministic Policy Gradient Theorem [Silver et. al. 2015] 
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Open AI Gym MujoCo  

●  Humanoid Demo 

○  https://www.youtube.com/watch?v=SHLuf2ZBQSw 

 

●  Half Cheetah  

○  https://www.youtube.com/watch?v=EzBmQsiUWB 
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Estimating the Advantage Function 

Source: David Silver Lecture slides 
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Deep Deterministic Policy Gradient (DDPG) 

●  Policy Gradient Theorem (Sutton et. al. 1999): 
 
 

 
 
●  With stochastic policy gradient, the inner integral (red box in 2) is computed 

by sampling a high dimensional action space. In contrast, the deterministic 
policy gradient can be computed immediately in closed form. 
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