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What is DNA sequencing?

The process of determining the order 
of nucleotides within a DNA molecule

Basically, we want to figure out the 
order of the four bases that appear in 
a strand of DNA: Adenine (A), 
Guanine (G), Cytosine (C), and 
Thymine (T)



What is DNA sequencing 
data similar to?

It can be thought to have similar properties 
as natural language data and computer 
vision data:

▷ Like language, it has discrete 
sequences of characters (A, G, C, and T)

▷ Like vision, it has regularly appearing 
patterns placed on noisy backgrounds



Where do generative models 
fit in?

They are able to construct DNA sequence 
data with the desired structure and 
properties

Examples of models include:

▷ GANs
▷ VAEs
▷ Deep Autoregressive Models
▷ Activation Maximization
▷ Style Transfer



3 complementary methods to 
synthesize DNA

▷ A GAN-based deep generative network
▷ A variant of the activation maximization 

method
▷ A joint method which combines the 

previous two in a single architecture

By capturing the underlying structure of the 
training dataset, these models are able to 
generate DNA sequences with the desired 
structure



1.
Generative Adversarial 

Networks (GANs)

to learn the underlying structure of a given dataset of 
DNA sequences and generate realistic data



First Test: Exploring the 
Latent Encoding of DNA 
sequences

By training your model on a large dataset, 
you can analyze what it has learned about 
the latent space through manipulations

A dataset of 4.6M sequences, each of length 
50, has been trained. Each sequence 
contains the hg38 chromosome

▷ Latent interpolation
▷ Latent complementation
▷ Distance to training sequences



Latent Interpolation

By interpolating points in latent space, it can 
be shown how the data generated varies 
between any two points, z1 and z2



Latent Complementation
Since we know there are several latent vectors that 
generate the same data:

1. Fix a DNA sequence x and 64 different points in 
the latent space, z1, z2, …, z64, that generate x, G(zi) 
= x

2. Reflect each of the latent points and decode the 
generated sequence

3. The complement/reflection of x is G(-zi)



Second Test: Capturing Exon 
Splice Site Signals
▷ Used a dataset of 116k sequences, each of length 500
▷ Each sequence contains exactly one exon
▷ Each exon varies in length between 50 and 400
▷  To track exon positions, introduce a flag in the train set
▷ Any positions that is part of an exon is flagged as 1, 

otherwise, as 0
▷ The model then learns the positions of an exon by 

capturing statistical data about the exon borders 
(splice sites) from the training samples



2.
The Activation 

Maximization Method & 
the Joint Method

to design DNA sequences that exhibit a desired property 
or multiple properties (can be contrasting)



▷ Using GANs, we can generate 
realistic-looking data

▷ Using AM, we will generate DNA 
sequences that have properties we desire

▷ That is, AM is an optimization problem 
and not a modelling problem

▷ For images, AM uses a classifier network 
to create images that belong to a certain 
class in reverse

▷ In reverse, meaning we generate p(x|c) 
using p(c|x) and p(x)

Activation Maximization (AM)



▷ A predictor function P that takes data as input and 
produces some target property t = P(x) as output

▷ P(x) is some combination of known, explicitly coded 
functions fi and parameterized neural network 
learned functions fθi:

P(x) = Σiαifi(x) + Σjβj fθj(x)
▷ αi and βj are fixed weights that indicate the influence 

of each property
▷ Using any input x, calculate the gradient ▽xt with a 

small step size ϵ:

x = x + ϵ▽xt
▷ The original input x increases/decreases t towards 

its desired/optimal values

AM



▷ Obtain a continuous relaxation of one-hot sequence 
vectors by adding a simple unstructured latent 
variable z of shape (L, 4), same as the data encoding

▷ Transform z into a sequence using a simple softmax 
pre-layer:

xij = 

▷ xij is then used as an input to the predictor function P 
▷ Gradients are calculated wrt z rather than x:

 z = z + ϵ▽zt
▷ The derived distributions can be interpreted as 

discrete sequences by taking the argmax at each 
position 

AM for DNA

exp(zij)

Σk=1
4 exp(zik)



▷ AM is often unrealistic because it favors the 
optimization of attributes

▷ Solution: Combine AM with a generative model

▷ Generator G which transforms latent codes z into 
synthetic data x

▷ Predictor P maps x to its target attributes t = P(x)
▷ G and P are plugged back-to-back to form  z → x → t

z = z + ϵ▽zt

The Joint Method



▷ A motif of length K is represented by a K x 4 position 
weight matrix (PWM)

▷ The predictor function has two stages:
a. Scans across the data using a 1D convolution, 

computing the inner product of a fixed PWM with 
every length-K subsequence of the data

b. Selects the single convolutional output with the 
highest value to obtain the sequence’s final score

▷  A sequence will have high score as long as it has a 
single subsequence which has a large inner product 
with the chosen PWM

Explicit Predictor: Motif Matching I



Explicit Predictor: Motif Matching II



▷ Use an oracle model trained on the original data to 
query newly designed sequences  and determine their 
binding score

▷ Dataset contained the original sequences along with 
their oracle-based scores

Learned Predictor: Protein Binding



▷ Goal: design DNA sequences that bind to one protein 
in a family but not the other

▷ Many sequences can be designed with characteristics 
that generalize well beyond the explicit content of the 
training data

▷ This is because the two predictors used can capture 
the same structure, differing only in subtle ways

▷ Simply put, the joint model explores the subtle 
differences between the desired properties and uses 
that to generate the required DNA sequences

Optimizing Multiple Properties
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Appendix: One-Hot Encoding

Nominal Encoding One-Hot Encoding


