
GraphRNN: A Deep Generative Model for Graphs (24 Feb 2018)

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, Jure Leskovec

Presented by: Jesse Bettencourt and Harris Chan

March 9, 2018

University of Toronto, Vector Institute

1

Introduction: Generative Model for Graphs

Modeling graphs is fundamental for studying networks

e.g. medical, chemical, social

Goal:

Model and efficiently sample complex distributions over graphs

Learn generative model from observed set of graphs

2

Challenges in Graph Generation

Large and variable output spaces

Graph with n nodes requires n2 to fully specify structure

Number of nodes and edges varies between different graphs

Non-unique representations

Distributions over graphs without assuming fixed set of nodes

n node graph represented by up to n! equivalent adjacency matrices

π ∈ Π is arbitrary node ordering

Complex, non-local dependencies

New edges depend on previously generated edges

3

Overview to GraphRNN

Decompose graph generation into two RNNs:

• Graph-level: generates sequence of nodes

• Edge-level: generates sequence of edges for each new node

4

Modeling Graphs as Sequences

Graph G ∼ p(G) with n nodes under node ordering π

Define mapping fs from G to sequence

Sπ = fS(G , π) = (Sπ1 , . . . ,S
π
n) (1)

Each sequence element is adjacency vector

Sπi ∈ {0, 1}i−1 i ∈ {1, . . . , n}
for edges between node π(vi) and π(vj) , j ∈ {1, . . . , i − 1}

5

Modeling Graphs as Sequences

Graph G ∼ p(G) with n nodes under node ordering π

Define mapping fs from G to sequence

Sπ = fS(G , π) = (Sπ1 , . . . ,S
π
n) (1)

Each sequence element is adjacency vector

Sπi ∈ {0, 1}i−1 i ∈ {1, . . . , n}
for edges between node π(vi) and π(vj) , j ∈ {1, . . . , i − 1}

5

Modeling Graphs as Sequences

Graph G ∼ p(G) with n nodes under node ordering π

Define mapping fs from G to sequence

Sπ = fS(G , π) = (Sπ1 , . . . ,S
π
n) (1)

Each sequence element is adjacency vector

Sπi ∈ {0, 1}i−1 i ∈ {1, . . . , n}
for edges between node π(vi) and π(vj) , j ∈ {1, . . . , i − 1}

5

Modeling Graphs as Sequences

Graph G ∼ p(G) with n nodes under node ordering π

Define mapping fs from G to sequence

Sπ = fS(G , π) = (Sπ1 , . . . ,S
π
n) (1)

Each sequence element is adjacency vector

Sπi ∈ {0, 1}i−1 i ∈ {1, . . . , n}
for edges between node π(vi) and π(vj) , j ∈ {1, . . . , i − 1}

5

Modeling Graphs as Sequences

Graph G ∼ p(G) with n nodes under node ordering π

Define mapping fs from G to sequence

Sπ = fS(G , π) = (Sπ1 , . . . ,S
π
n) (1)

Each sequence element is adjacency vector

Sπi ∈ {0, 1}i−1 i ∈ {1, . . . , n}
for edges between node π(vi) and π(vj) , j ∈ {1, . . . , i − 1}

5

Distribution on Graphs → Distribution on Sequences

Instead of learning p(G) sample, π ∼ Π to get observations of Sπ

Then learn p(Sπ) modeled autoregressively:

p(G) =
∑
Sπ

p(Sπ)1[fG (Sπ) = G] (3)

Exploiting sequential structure of Sπ, decompose p(Sπ)

P(Sπ) =
n+1∏
i=1

p(Sπi |Sπ1 , . . . ,Sπi−1) (4)

=
n+1∏
i=1

p(Sπi |Sπ<i)

6

Motivating GraphRNN

Model p(G)

Distribution over graphs

↓
Model p(Sπ)

Distribution over sequence of edge connections

↓
Model p(Sπi |Sπ<i)

Distribution over edge connections for i-th node

conditioned on previous nodes’ edge connections

parameterize with an expressive neural network

7

GraphRNN Framework

Idea: Use an RNN that consists of a state-transition function and

an output function:

hi = ftrans(hi−1,S
π
i−1) (5)

θi = fout(hi) (6)

• hi ∈ Rd encodes the state of the graph generated so far

• Sπi−1 encodes adjacency for most recently generated node i − 1

• θi specifies the distribution of next node’s adjacency vector

Sπi ∼ Pθi

• ftrans and fout can be arbitrary neural networks

• Pθi can be an arbitrary distribution over binary vectors
8

GraphRNN Framework Corrected

Idea: Use an RNN that consists of a state-transition function and

an output function:

hi = ftrans(hi−1, S
π
i) (5)

θi+1 = fout(hi) (6)

• hi ∈ Rd encodes the state of the graph generated so far

• Sπi encodes adjacency for most recently generated node i

• θi+1 specifies the distribution of next node’s adjacency vector

Sπi+1 ∼ Pθi+1

• ftrans and fout can be arbitrary neural networks

• Pθi can be an arbitrary distribution over binary vectors.
9

GraphRNN Framework Corrected

Idea: Use an RNN that consists of a state-transition function and

an output function:

hi = ftrans(hi−1,S
π
i) (5)

θi+1 = fout(hi) (6)

Sπi+1 ∼ Pθi+1

10

GraphRNN Inference Algorithm

Algorithm 1 GraphRNN inference algorithm

Input: RNN-based transition module ftrans , output module fout ,

probability distribution Pθi parameterized by θi , start token SOS,

end token EOS, empty graph state h′

Output: Graph sequence Sπ

Sπ0 = SOS, h0 = h′, i = 0

repeat

i = i + 1

hi = ftrans(hi−1, S
π
i−1) {update graph state}

θi = fout(hi)

Sπi ∼ Pθi {sample node i ’s edge connections}
until Sπi is EOS

Return Sπ = (Sπ1 , ...,S
π
i)

11

GraphRNN Inference Algorithm Corrected

Algorithm 1 GraphRNN inference algorithm

Input: RNN-based transition module ftrans , output module fout ,

probability distribution Pθi parameterized by θi , start token SOS,

end token EOS, empty graph state h′

Output: Graph sequence Sπ

Sπ
�01

= SOS, h0 = h′, i = 0

repeat

i = i + 1

hi = ftrans(hi−1, S
π
��i−1 i) {update graph state}

θ�i i+1 = fout(hi)

Sπ
�i i+1

∼ Pθ�i i+1
{sample node ��i i + 1’s edge connections}

until Sπ
�i i+1

is EOS

Return Sπ = (Sπ1 , ...,S
π
i)

12

GraphRNN Variants

Objective:
∏

pmodel(S
π) over all observed graph sequences

Implement ftrans as Gated Recurrent Unit (GRU)

But different assumptions about p(Sπi |Sπ<i) for each variant:

1. Multivariate Bernoulli (GraphRNN-S):

fout is a MLP with sigmoid activation that outputs θi+1 ∈ Ri

θi+1 parameterizes the multivariate Bernoulli

Sπi+1 ∼ Pθi+1
independently

13

GraphRNN Variants

Objective:
∏

pmodel(S
π) over all observed graph sequences

Implement ftrans as Gated Recurrent Unit (GRU)

But different assumptions about p(Sπi |Sπ<i) for each variant:

2. Dependent Bernoulli sequence (GraphRNN):

p(Sπi |Sπ<i) =
i−1∏
j=1

p(Sπi ,j |Sπi ,<j , S
π
<i) (7)

• Sπi,j ∈ {0, 1} indicating if node π(vi) is connected to node π(vj)

• fout is a edge-level RNN generates the edges of a given node

14

Tractability via Breadth First Search (BFS)

Idea: Apply BFS ordering to the graph G with node permutation

π before generating the sequence Sπ

Benefits:

• Reduce overall # of seq to consider

Only need to train on all possible BFS orderings, rather than

all possible node permutations

• Reduce the number of edge predictions

Edge-level RNN only predicts M edges, the maximum size of

the BFS queue

15

BFS Order Leads To Fixed Size Sπi

Sπi ∈ RM represents “sliding window” over nodes in the BFS queue

Zero-pad all Sπi to be a length M vector:

Sπi = (Aπmax(1,i−M),i , ...,A
π
i−1,i)

T , i ∈ {2, ..., n} (9)

16

Experiments

Datasets

3 Synthetic and 2 real graph datasets:

Dataset Type # Graphs Graph Size Description

Community Synthetic 500 60 ≤ ‖V ‖ ≤ 160 2-community,

Erdős-Rényimodel

(E-R)

Grid Synthetic 100 100 ≤ |V | ≤ 400 Standard 2D grid

B-A Synthetic 500 100 ≤ |V | ≤ 200 Barabási-Albert

model, 4 existing

nodes connected

Protein Real 918 100 ≤ |V | ≤ 500 Amino acids

nodes, edge if

≤ 6 Angstroms

apart

Ego Real 757 50 ≤ |V | ≤ 399 Document nodes,

edges citation re-

lationships, from

Citeseer

17

Baseline Methods & Settings

• Compared GraphRNN to traditional models and deep learning

baselines:
Method Type Algorithm

Traditional

Erdős-RényiModel (E-R) (Erdös & Rényi, 1959)

Barabási-Albert Model (B-A) (Albert & Barabási, 2002)

Kronecker graph models (Leskovec et al., 2010)

Mixed-membership stochastic block models (MMSB) (Airoldi et al.,

2008)

Deep learning
GraphVAE (Simonovsky & Komodakis, 2018)

DeepGMG (Li et al., 2018)

• 80%-20% train-test split

• All models trained with early stopping

• Traditional methods: learn from a single graph, so train a

separate model for each training graph in order to compare

with these methods

• Deep learning baselines: use smaller dataset:

Community-small: 12 ≤ |V | ≤ 20

Ego-small: 4 ≤ ‖V ‖ ≤ 18
18

Evaluating Generated Graph Via MMD Metric

Existing:

• Visual Inspection

• Simple comparisons of average statistics between the two sets

Proposed:

A metric based on Maximum Mean Discrepancy (MMD), to

compare all moments of their empirical distributions using an

exponential kernel with Wasserstein distance.

19

Graph Visualization

Figure 2: Visualization of graphs from grid dataset (Left group),
community dataset (Middle group) and Ego dataset (Right group).
Within each group, graphs from training set (First row), graphs
generated by GraphRNN(Second row) and graphs generated by
Kronecker, MMSB and B-A baselines respectively (Third row) are shown.
Different visualization layouts are used for different datasets.

20

Comparison with traditional models

Table 1: Comparison of GraphRNNto traditional graph generative
models using MMD. (max(|V |),max(|E |)) of each dataset is shown.

Community (160,1945) Ego (399,1071) Grid (361,684) Protein (500,1575)

Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit

E-R 0.021 1.243 0.049 0.508 1.288 0.232 1.011 0.018 0.900 0.145 1.779 1.135

B-A 0.268 0.322 0.047 0.275 0.973 0.095 1.860 0 0.720 1.401 1.706 0.920

Kronecker 0.259 1.685 0.069 0.108 0.975 0.052 1.074 0.008 0.080 0.084 0.441 0.288

MMSB 0.166 1.59 0.054 0.304 0.245 0.048 1.881 0.131 1.239 0.236 0.495 0.775

GraphRNN-S 0.055 0.016 0.041 0.090 0.006 0.043 0.029 10−5 0.011 0.057 0.102 0.037

GraphRNN 0.014 0.002 0.039 0.077 0.316 0.030 10−5 0 10−4 0.034 0.935 0.217

• GraphRNN had 80% decrease of MMD on average

compared with traditional baselines

• GraphRNN-S performed well on Protein: may not involve

highly complex edge dependencies

21

Comparison with Deep Learning Models & Generalization

Table 2: GraphRNNcompared to state-of-the-art deep graph generative
models on small graph datasets using MMD and negative log-likelihood
(NLL). (max(|V |),max(|E |)) of each dataset is shown. (DeepVAE and
GraphVAE cannot scale to the graphs in Table 1.)

Community-small (20,83) Ego-small (18,69)

Degree Clustering Orbit Train NLL Test NLL Degree Clustering Orbit Train NLL Test NLL

GraphVAE 0.35 0.98 0.54 13.55 25.48 0.13 0.17 0.05 12.45 14.28

DeepGMG 0.22 0.95 0.40 106.09 112.19 0.04 0.10 0.02 21.17 22.40

GraphRNN-S 0.02 0.15 0.01 31.24 35.94 0.002 0.05 0.0009 8.51 9.88

GraphRNN 0.03 0.03 0.01 28.95 35.10 0.0003 0.05 0.0009 9.05 10.61

• GraphRNN had 90% decrease of MMD on average

compared with deep learning baselines

• 22% smaller average NLL gap compared to other deep models

22

Experiments: Evaluation with Graph Statistics

Figure 3: Average degree (Left) and clustering coefficient (Right)
distributions of graphs from test set and graphs generated by GraphRNN
and baseline models.

• GraphRNN generated graphs’ average statistics closely matchs

the overall test set distribution.

23

Experiments: Robustness

Interpolate between (B-A) and (E-R) graphs

Randomly perturb [0%, 20%, ..., 100%] edges of B-A graphs

0% (B-A) ←→ 100% (E-R)

Figure 4: MMD performance of different approaches on degree (Left)
and clustering coefficient (Right) under different noise level.

GraphRNN maintains strong performance as we interpolate

between these structures, indicating high robustness and versatility.
24

	Experiments

