Hierarchical Multiscale Recurrent Neural Networks

Junyoung Chung, Sungjin Ahn, Yoshua Bengio Presented by Arvid Frydenlund

February 23, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The problem with stacked RNNs

Issue: Temporal data often has structure at different time scales

i.e. characters \rightarrow words \rightarrow phrases \rightarrow sentences

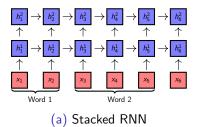
- Want an RNN to make efficient use of that hierarchical structure
- Stacked RNNs need to
 - 1. work on lowest common scale
 - i.e. needs to step all layers every character
 - 2. work on set cyclic scales

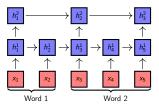
i.e. a clock work RNN stepping layers according to hyperparameters

- 3. be given boundary information about the time scales as input
 - i.e. knowing that words are separated by white space

Solution: Make dynamic decisions on when to step layers

Stacked and Clockwork RNNs

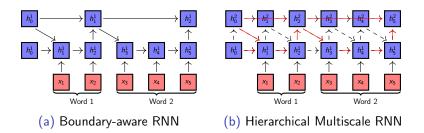




(b) Clockwork RNN

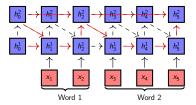
▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Boundary-aware and Hierarchical Multiscale RNNs



◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ ○ ○ ○

Hierarchical Multiscale RNNs



- Boundary detection at every layer
 - ▶ $z'_t = \max(0, \min(1, \frac{ax+1}{2})) > 0.5$, *a* is a slope hyper-parameter

Operations (Simplified)

- 1. Update: Takes in new input and updates hidden state, if boundary is detected
- 2. Copy: Carries over whole hidden state without change, if no boundary is detected
- Flush: Pushes current hidden state to next layer then does a (hard) reset of the hidden state, if boundary is detected

Pros and Cons of Hierarchical Multiscale RNNs

Pros:

- 1. Computational Efficiency since upper layers require less updates
- 2. Less updates means better information transfer across network and less vanishing gradients
- 3. Better resource allocation since we can make upper layers higher dimensional
- 4. Possibly using learned hierarchal information for down stream tasks
- Con: Discrete choices means that the network is no longer differentiable
 - Use 'Straight-through' estimator
 - Use thresholded hard sigmoid during forward pass and ignore threshold during backward pass
 - Anneal slope, a, to train from a softer function to a sharper one

Language Modelling Experiments

РТВ	LayerNorm HyperNetworks	1.23
	HM-LSTM (No annealing)	1.25
	HM-LSTM (annealing)	1.24
Hutter	decomp8	1.28
	HM-LSTM (annealing)	1.32
Text8	HM-LSTM (annealing)	1.29
	BatchNorm-LSTM	1.36

Table: Bits-per-character for character-level language modelling. HM-LSTM is our model. Then SOTA bolded.

Figure: Detected boundaries in white.

ъ

Thanks