INTRODUCTION TO EVOLUTION STRATEGY ALGORITHMS

James Gleeson Eric Langlois William Saunders

REINFORCEMENT LEARNING CHALLENGES

Credit assignment problem

Bob got a great bonus this year!

...what did Bob do to earn his bonus?

Time horizon: 1 year

[+] Met all his deadlines

Took an ML course 3 [+] years ago Sparse reward signal

<u>strategy</u>

Lets just treat / like a black-box function when optimizing it. "Try different 0", and see what works. If we find good θ 's, keep them, discard the bad ones. Recombine $\theta \downarrow 1$ and $\theta \downarrow 2$ to form a new (possibly better) $\theta \downarrow 3$

EVOLUTION STRATEGY ALGORITHMS

> The template:

"Sample" new generation

Generate some parameter vectors for your neural networks.

MNIST ConvNet parameters $\theta_1, \theta_2, \theta_3$

Fitness

Evaluate how well each neural network performs on a **training set**.

"Prepare" to sample the new generation:

Given how well each "mutant" performed...

Natural selection! \rightarrow Keep the good ones

The ones that remain "recombine" to form the next generation.

SCARY "TEST FUNCTIONS" (1)

Rastrigin function Test function

Rastrigin function (again)

Lots of local optima; will be difficult to optimize with Backprop + SGD!

SCARY "TEST FUNCTIONS" (2)

Schaffer function

WHAT WE WANT TO DO; "TRY DIFFERENT" "

Schaffer

Rastrigin

CMA-ES; HIGH-LEVEL OVERVIEW

ES: LESS COMPUTATIONALLY EXPENSIVE

IDEA:

Sample neural-network parameters from

a multi-variate gaussian w/ **diagonal covariance** matrix.

Update $N(\theta = [\mu, \Sigma])$ parameters using REINFORCE gradient estimate.

$$egin{aligned} egin{aligned} egi$$

$$egin{aligned}
abla_ heta J(heta) &=
abla_ heta E_ heta [F(heta)] \ &= E_ heta [F(z)
abla_ heta \log p(z| heta)] \ &pprox \sum_{i=1}^N F(z_i)
abla_ heta \log p(z_i| heta) \end{aligned}$$

$$heta
ightarrow heta
angle + \eta
abla_ heta J(heta)$$

Neural-network parameters.

Parameters for sampling neural-network parameters.

Adaptive σ and μ

ES: __EVEN_LESS__ COMPUTATIONALLY EXPENSIVE

IDEA:

Just use the same σ and μ for each parameter. \rightarrow Sample neural-network parameters from "isotropic gaussian" $=N(\mu, \sigma 12 I)$

Seems suspiciously simple...but it can compete!

- OpenAl ES paper:
 - $\triangleright \sigma$ is a hyperparameter
 - I set of hyperparameters for Atari
 - I set of hyperparameters for Mujoco
 - Competes with A3C and TRPO performance

Constant σ and μ

EVOLUTION STRATEGIES AS A SCALABLE ALTERNATIVE TO REINFORCEMENT LEARNING

James Gleeson Eric Langlois William Saunders

TODAY'S RL LANDSCAPE AND RECENT SUCCESS

Discrete action tasks:

- Learning to play Atari from raw pixels
- Expert-level go player

!! 🛁	▙_ U:∟					
READY/						
•••• ••••••	•••• •••					
© Atari	ويتياني					

Continuous action tasks:

"Hopping" locomotion

Q-learning:

Learn the action-value function:

Policy gradient; e.g. TRPO:

Learn the policy directly

 $\pi(a|s, heta)$

Approximate the function using a neural-network, train it using gradients computed via **backpropagation** (i.e. the chain rule)

MOTIVATION: PROBLEMS WITH BACKPROPAGATION

- Backpropagation isn't perfect:
 - GPU memory requirements
 - Difficult to parallelize
 - Cannot apply directly to non-differentiable functions
 - > e.g. discrete functions $F(\theta)$ (the topic of this course)
 - Exploding gradient (e.g. for RNN's)

> You have a datacenter, and cycles to spend

RL problem

AN ALTERNATIVE TO BACKPROPAGATION: EVOLUTION STRATEGY (ES)

THE MAIN CONTRIBUTION OF THIS PAPER

> Criticisms:

Evolution strategy aren't new!

Common sense:

The variance/bias of this **gradient estimator** will be too high, making the algorithm unstable on today's problems!

> This paper aims to **refute your common sense**:

Comparison against state-of-the-art RL algorithms:

► <u>Atari:</u>

Half the games do <u>better</u> than a **recent algorithm (A3C)**, half the games do worse

Mujoco:

Can match state-of-the-art **policy gradients** on continuous action tasks.

<u>Linear speedups</u> with more compute nodes: 1 day with A3C \rightarrow 1 hour with ES

 $rac{\partial}{\partial heta}F(heta+\epsilon) pprox rac{1}{\sigma^2}E_{\epsilon \sim N(0,\sigma^2)}[\epsilon F(heta+\epsilon)]$

FIRST ATTEMPT AT ES: THE SEQUENTIAL ALGORITHM

Gradient estimator needed for updating θ :

$$\frac{\partial}{\partial \theta} F(\theta + \epsilon) \approx \frac{1}{\sigma^2} E_{\epsilon \sim N(0, \sigma^2)} [\epsilon F(\theta + \epsilon)] \longrightarrow \text{Sample:} \frac{1}{\sigma^2} \epsilon F(\theta + \epsilon)$$

In RL, the fitness $F(\theta)$ is defined as:

 $F(heta) = E_ au[R_ au]$

Where:

 $\tau =$ An episode of state (s) action (a) pairs

 $R_{ au} = {
m Sum} \ {
m of} \ {
m rewards} \ {
m received} \ {
m over} \ {
m episode} \ au$

Embarassingly parallel! for each WorkerJi i=1..n: WorkerJi:computes FJi in parallel

Sequentially run each mutant

Compute gradient estimate

Algorithm 1 Evolution Strategies

Input: Learning rate α, noise standard deviation σ, initial policy parameters θ₀
 for t = 0, 1, 2, ... do
 Sample ε₁,... ε_n ~ N(0, I)

4: Compute returns $F_i = F(\theta_t + \sigma \epsilon_i)$ for i = 1, ..., n

5: Set
$$\theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n\sigma} \sum_{i=1}^n F_i \epsilon_i$$

6: end for

SECOND ATTEMPT: THE PARALLEL ALGORITHM

Algorithm 2 Parallelized Evolution Strategies

- 1: Input: Learning rate α , noise standard deviation σ , initial policy parameters θ_0
- 2: Initialize: n workers with known random seeds, and initial parameters θ_0

3: for
$$t = 0, 1, 2, \dots$$
 do

- for each worker $i = 1, \ldots, n$ do 4:
- 5:
- Sample $\epsilon_i \sim \mathcal{N}(0, I)$ Compute returns $F_i = F(\theta_t + \sigma \epsilon_i)$ Embarassingly parallel! 6:
- 7: end for
- Send all scalar returns F_i from each worker to every other worker 8:
- for each worker $i = 1, \ldots, n$ do 9:
- Reconstruct all perturbations ϵ_j for $j = 1, \ldots, n$ using known random seeds 10:

11: Set
$$\theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n\sigma} \sum_{j=1}^n F_j \epsilon_j$$

- end for 12:
- 13: end for

With F_{i} and ϵ_{i} known by

everyone,

each worker compute the same gradient estimate

Tradeoff:

redundant computation over $|\theta|$ message size

```
KEY IDEA: Minimize communication cost
 avoid sending len(\epsilon)=|\theta|, send len(F\downarrow i)=1 instead.
```

How? Each worker reconstructs random perturbation vector e

...How? Make initial random seed of *WorkerJi* globally known.

EXPERIMENT: HOW WELL DOES IT SCALE?

Criticism:

Are diminishing returns due to:

- increased communication
 cost from more workers
- less reduction in variance of the gradient estimate from more workers

Figure 1: Time to reach a score of 6000 on 3D Humanoid with different number of CPU cores. Experiments are repeated 7 times and median time is reported.

Linearly! With diminishing returns; often inevitable.

INTRINSIC DIMENSIONALITY OF THE PROBLEM

$$egin{aligned} rac{\partial}{\partial heta}F(heta)&pproxrac{1}{\sigma^2}E_{\epsilon\sim N(0,\sigma^2)}[\epsilon F(heta+\epsilon)]\ E_\epsilon[rac{F(heta)\epsilon}{\sigma^2}]&=0, ext{ since } E_\epsilon[\epsilon]=0\ rac{\partial}{\partial heta}F(heta)&pprox E_{\epsilon\sim N(0,\sigma^2)}[rac{F(heta+\epsilon)-F(heta)}{\sigma^2}\epsilon] \end{aligned}$$

- pprox finite differences in some random direction ϵ
- → # update steps scales with $|\theta|$?

E.g. Simple linear regression: Double $|\theta| \rightarrow |\theta|^{\prime}$

$$y = x heta$$

 $\frac{\partial}{\partial heta}F(heta)$
 $y' = x' heta'$
 $\approx 2x heta$
 $e^{j1} \sim e^{j2} \sim N(\mu)$
 π^{j2}
 $\approx 4\frac{\partial}{\partial heta}F(heta)$
 $\eta' = \frac{\eta}{2}, \sigma' = \frac{\sigma}{2}$

After adjusting η and σ , Update step has the same effect. \rightarrow Same # of update steps.

Argument:

of update steps in ES scales with the *intrinsic dimensionality* of e needed for the problem, *not with the length* of e.

WHEN IS ES A BETTER CHOICE THAN POLICY GRADIENTS?

How do we compute gradients?

Policy gradients:

Policy network outputs a softmax of probabilities for different discrete actions, and we sample an action randomly.

 $\nabla_{\theta} F_{PG}(\theta) = \mathbb{E}_{\epsilon} \left\{ R(\mathbf{a}(\epsilon, \theta)) \nabla_{\theta} \log p(\mathbf{a}(\epsilon, \theta); \theta) \right\}$

Evolution strategy (ES): We randomly perturb our parameters: $\theta \rightarrow \tilde{\theta}$ then select actions according to $\tilde{\theta}$

$$\nabla_{\theta} F_{ES}(\theta) = \mathbb{E}_{\xi} \left\{ R(\mathbf{a}(\xi, \theta)) \nabla_{\theta} \log p(\tilde{\theta}(\xi, \theta); \theta) \right\}$$

Credit assignment problem

ES makes fewer (potentially incorrect) assumptions

$$egin{aligned} Var[XY] &= E[X^2Y^2] - E[XY]^2 \ &= E[X^2]E[Y^2] - E[X]^2E[Y]^2 \ &\# \ Since \ E[X^2] = Var[X] + E[X]^2 \ &= (Var[X] + E[X]^2)(Var[Y] + E[Y]^2) - E[X]^2E[Y]^2 \ &= Var[X]Var[Y] + Var[X]E[Y]^2 + Var[Y]E[X]^2 \ &pprox Var[X]Var[Y] \end{aligned}$$

 $\operatorname{Var}[\nabla_{\theta} F_{PG}(\theta)] \approx \operatorname{Var}[R(\mathbf{a})] \operatorname{Var}[\nabla_{\theta} \log p(\mathbf{a}; \theta)]$ $\operatorname{Var}[\nabla_{\theta} F_{ES}(\theta)] \approx \operatorname{Var}[R(\mathbf{a})] \operatorname{Var}[\nabla_{\theta} \log p(\tilde{\theta}; \theta)]$

Independent of episode length.

Variance of gradient estimate grows linearly $\nabla_{\theta} \log p(a_t; \theta)$ with the length of the episode. only fixes this for short-term returns!

EXPERIMENT: ES ISN'T SENSITIVE TO LENGTH OF EPISODE

Frame-skip F:

- Agent can select an action every F frames of input pixels
- ⊳ E.g. F = 4

frame 1: agent selects an action frame 1-3: agent is forced to take Noop action

IDEA:

artificially inflate the length of an episode $\boldsymbol{\tau}$

Playing pong with frameskip

Figure 2: Learning curves for Pong using varying frame-skip parameters. Although performance is stochastic, each setting leads to about equally fast learning, with each run converging in around 100 weight updates.

Argument:

Since the ES algorithm doesn't make **any assumption** about time horizon γ (decaying reward), it is less sensitive to long episodes τ (i.e. the **credit assignment problem**)

EXPERIMENT: LEARNED PERFORMANCE

> The authors looked at:

- discrete action tasks -- Atari
- > continuous action tasks -- Mujoco

EXPERIMENT: DISCRETE ACTION TASKS -- ATARI

Paper's claim: "Given the same amount of compute time as other algorithms, compared to A3C, ES does better on 21 games, worse on 29 "

Slightly misleading claim if you aren't reading carefully:

A3C still does better on <u>most games</u> across all algorithms → ES is still beaten by other algorithms when it beats A3C

Best score:	4	19	11	7	9
	8%	38%	22%	14%	18%
Game	DQN	A3C FF, 1 day	HyperNEAT	ES FF, 1 hour	A2C FF
Montezuma's Revenge	50.0	53.0	0.0	0.0	0.0
D 1	202.0			0.5	260.5
Breakout	303.9	551.0	2.8	9.5	368.5
Pong	16.2	11.4	17.4	21.0	20.8
1 0115	10.2				-0.0
Skiing		13700.0	7983.6	15442.5	15245.8

50 games in total

EXPERIMENT: CONTINUOUS ACTION TASKS -- MUJOCO

Sampling complexity:

How many steps in the environment were needed to reach X% of policy gradient performance?

ES Timesteps/# < 1 \rightarrow Better sampling complexity *TRPO Timesteps* > 1 \rightarrow Worse sampling complexity

Table 1: MuJoCo tasks: Ratio of ES timesteps to TRPO timesteps needed to reach various percentages of TRPO's learning progress at 5 million timesteps.

Environment	25%	50%	75%	100%	
HalfCheetah	0.15	0.49	0.42	0.58	
Hopper	0.53	3.64	6.05	6.94	
InvertedDoublePendulum	0.46	0.48	0.49	1.23	
InvertedPendulum	0.28	0.52	0.78	0.88	
Swimmer	0.56	0.47	0.53	0.30	
Walker2d	0.41	5.69	8.02	7.88	

Harder tasks: at most 10x more samples required

Simpler tasks: as few as 0.33x samples required

SUMMARY: EVOLUTION STRATEGY

ES are a viable alternative to **current RL algorithms**:

Q-learning:

Learn the action-value function:

Q(s,a)

Policy gradient; e.g. TRPO: Learn the policy directly

ES:

Treat the problem like a black-box, perturb θ and evaluate fitness $F(\theta)$: $F(heta) = E_{ au}[R_{ au}]$

Where:

 $\tau =$ An episode of state (s) action (a) pairs

 $R_{\tau} =$ Sum of rewards received over episode τ

- No potentially incorrect assumptions about credit assignment problem (e.g. time horizon γ)
- No backprop required
 - Embarrassingly parallel
 - Lower GPU memory requirements