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REINFORCEMENT LEARNING CHALLENGES 

Credit assignment problem 

Bob got a great 
bonus this year! 
 
…what did Bob do to 
earn his bonus? 

𝑓(𝜃) is a discrete  
function of theta… 
How do we get a 
gradient ​𝛻↓θ 𝑓? 
 

Discrete 
𝑓(𝜃)  

Backprop 

Local minima ​𝛻↓θ 𝑓 
Sparse reward signal 

IDEA: 
Lets just treat 𝑓 like a black-box function when optimizing it.  like a black-box function when optimizing it. 
“Try different θ”, and see what works.   
If we find good θ’s, keep them, discard the bad ones. 
Recombine ​𝜃↓1  and ​𝜃↓2  to form a new (possibly better) ​𝜃↓3  
 
 

Time horizon: 1 year 

[+]  Met all his deadlines 

[+]  Took an ML course 3  
 years ago 

Evolution 
strategy 



EVOLUTION STRATEGY ALGORITHMS 
� The template: 

Fitness 
Evaluate how well each neural network 
performs on a training set. 

“Prepare” to sample the new generation: 
 
Given how well each “mutant” performed… 
 
Natural selection!  à Keep the good ones 
 
The ones that remain “recombine” to form the 
next generation. 

“Sample” new generation 
Generate some parameter  
vectors for your neural  
networks. 
 

MNIST ConvNet 
parameters 



SCARY “TEST FUNCTIONS” (1) 

Rastrigin function 
Test function Rastrigin function (again) 

Lots of local optima; will be difficult to optimize with Backprop + SGD! 



SCARY “TEST FUNCTIONS” (2) 

Schaffer function 



WHAT WE WANT TO DO; “TRY DIFFERENT    “ 
θ 
 

Rastrigin Schaffer 

Algorithm: CMA-ES 



CMA-ES; HIGH-LEVEL OVERVIEW 

Step 1:  
Calculate fitness of  
current generation 𝑔(1) 

Step 2:  
Natural selection! 
 
Keep the top 25%. 
(purple dots) 

Step 3:  
Recombine to form the 

new generation: 
 

Discrepancy between mean of previous 
generation and top 25% will cast a wider 
net! 

𝑂( ​𝜃↑2 )




ES: LESS COMPUTATIONALLY EXPENSIVE 
IDEA:  
Sample neural-network parameters from  

 a multi-variate gaussian w/ diagonal covariance matrix. 
Update 𝑁(𝜃=[𝜇, Σ]) parameters using REINFORCE gradient estimate. 
 
 
   
 

𝑂(θ)


Parameters for sampling neural-network 
parameters. 

Neural-network parameters. 

Adaptive σ and µ 
 
 



ES: __EVEN_LESS__ COMPUTATIONALLY EXPENSIVE 

IDEA: 
Just use the same σ and 𝜇 for each parameter.  for each parameter. 
è Sample neural-network parameters from “isotropic gaussian” =𝑁(𝜇, ​𝜎↑2 𝐼) 
 
Distributed computation: minimize communication costs 
 
Each parallel worker evaluates 1 set of neural-network parameters, and they  
ONLY communicate their fitness values ​𝐹↓𝑖 =𝑂(1) communicate cost. 
 
Pre-agreed upon random-noise allows 
Reconstructing gradient estimates  
WITHOUT sending 𝑂(|𝜃|) gradients! 
 

Constant σ and µ 
 

�  IDEA: 

Just use the same σ and 𝜇 for each parameter.  for each parameter. 
è Sample neural-network parameters from “isotropic gaussian” 

=𝑁(𝜇, ​𝜎↑2 𝐼) 

�  Seems suspiciously simple…but it can compete! 

�  OpenAI ES paper: 

�  𝜎 is a hyperparameter  is a hyperparameter 

�  1 set of hyperparameters for Atari 

�  1 set of hyperparameters for Mujoco 

�  Competes with A3C and TRPO performance 
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TODAY’S RL LANDSCAPE AND RECENT SUCCESS 

Q-learning: 

Learn the action-value function:  

� Continuous action tasks:  
�  “Hopping” locomotion 

Learn the policy directly 

Policy gradient; e.g. TRPO: 

Approximate the function using a neural-network,  
train it using gradients computed via backpropagation  
(i.e. the chain rule) 
 

� Discrete action tasks:  
�  Learning to play Atari from raw pixels 

�  Expert-level go player 



MOTIVATION: PROBLEMS WITH BACKPROPAGATION 
� Backpropagation isn’t perfect: 

� You have a datacenter, and cycles to spend 

RL problem 

� GPU memory requirements 

� Difficult to parallelize 

� Cannot apply directly to non-differentiable functions 
�  e.g. discrete functions 𝐹(𝜃) (the topic of this course) 

� Exploding gradient (e.g. for RNN’s) 



AN ALTERNATIVE TO BACKPROPAGATION: 
EVOLUTION STRATEGY (ES) 

And have it be 
embarrassingly  

parallel? 

Proof: 

𝐹(𝜃) independent of 𝜖  

Gradient of 
objective 𝐹(𝜃) 

No derivates of 𝐹(𝜃) 

No chain rule / backprop required! 

𝐹(𝜃) could be a discrete function of θ 
 

Relevant to our course: 

Claim: 

2nd order Taylor series approximation 



THE MAIN CONTRIBUTION OF THIS PAPER 
� Criticisms: 

� This paper aims to refute your common sense: 
� Comparison against state-of-the-art RL algorithms: 

�  Atari:  
Half the games do better than a recent algorithm (A3C), half the games do 
worse 

�  Mujoco:  
Can match state-of-the-art policy gradients on continuous action tasks. 

Linear speedups with more compute nodes: 1 day with A3C è 1 hour with ES 

� Evolution strategy aren’t new! 

� Common sense: 
The variance/bias of this gradient estimator will be 
too high, making the algorithm unstable on today’s 
problems! 



FIRST ATTEMPT AT ES: THE SEQUENTIAL ALGORITHM 

Generate n random perturbations of θ 

Gradient estimator needed for updating θ: 

In RL, the fitness 𝐹(𝜃) is defined as: 

Sequentially run each mutant 

Compute gradient estimate 

Sample: 

Embarassingly parallel! 
for each 𝑊𝑜𝑟𝑘𝑒​𝑟↓𝑖  𝑖=1..𝑛: : 
    𝑊𝑜𝑟𝑘𝑒​𝑟↓𝑖 :computes ​𝐹↓𝑖  in parallel 



SECOND ATTEMPT: THE PARALLEL ALGORITHM 

� KEY IDEA: Minimize communication cost 
avoid sending len(𝜖)=|𝜃|, send len(​𝐹↓𝑖 )=1 instead. 

How? Each worker reconstructs random perturbation vector ϵ  
 …How? Make initial random seed of 𝑊𝑜𝑟𝑘𝑒​𝑟↓𝑖  globally known. 

 

With ​𝐹↓𝑗  and ​𝜖↓𝑗  known by  
everyone,  
each worker compute the  
same gradient estimate 
 

Embarassingly parallel! 

Tradeoff:  
redundant computation over  
|𝜃| message size 



EXPERIMENT: HOW WELL DOES IT SCALE? 

� Linearly! 
With diminishing returns; often inevitable. 

200 cores, 60 minutes 

Actual speedup Ideal speedup 
(perfectly linear) 

Criticism: 
Are diminishing returns due to:  
•  increased communication 

cost from more workers 
•  less reduction in variance of 

the gradient estimate from 
more workers 



INTRINSIC DIMENSIONALITY OF THE PROBLEM 

Argument: 
# of update steps in ES scales with the intrinsic dimensionality of θ  
needed for the problem, not with the length of θ. 

≈ finite differences in some random direction ϵ 

E.g. Simple linear regression: 
 Double |θ|→| ​θ↑′ | 

 
 
 
 
 

After adjusting η and σ, 
Update step has the same effect. 
è Same # of update steps. 

​𝜖↓1  
 

​𝜖↓2  
 

​𝜖↓1 ∼ ​𝜖↓2 ∼𝑁(𝜇, ​
𝜎↑2 ) 
 
 

Justification: 

è # update steps scales with |𝜃|? 



WHEN IS ES A BETTER CHOICE THAN POLICY GRADIENTS? 
ASIDE: In case you forget; for independent X & Y: 

Policy gradients: 
Policy network outputs a softmax of 
probabilities for different discrete actions, 
and we sample an action randomly. 

Variance of gradient estimate grows linearly  
with the length of the episode. 
𝛾 only fixes this for short-term returns!  only fixes this for short-term returns! 

Independent of episode length. 

Evolution strategy (ES): 
We randomly perturb our parameters: 
then select actions according to  
 

Credit assignment problem 
ES makes fewer  

(potentially incorrect)  
assumptions 

How do we compute gradients? 



EXPERIMENT: ES ISN’T SENSITIVE TO LENGTH OF EPISODE 
� Frame-skip F: 

� Agent can select an action every F frames 
of input pixels  

� E.g. F = 4 
frame 1:   agent selects an action 
frame 1-3:  agent is forced to take  
     Noop action 

IDEA: 
artificially inflate the length of an episode τ 

Argument: 
Since the ES algorithm doesn’t make any assumption about time horizon γ (decaying reward),  
it is less sensitive to long episodes τ (i.e. the credit assignment problem) 
 

Playing pong with frameskip 

≈ Same policy 

τ 



EXPERIMENT: LEARNED PERFORMANCE 
� The authors looked at: 

� discrete action tasks  -- Atari 

� continuous action tasks -- Mujoco 



EXPERIMENT: DISCRETE ACTION TASKS -- ATARI 
� Paper’s claim: 

“Given the same amount of compute time as other algorithms,  
compared to A3C, ES does better on 21 games,  
worse on 29 ” 

50 games in total 

4 
8% 

Best score: 19 
38% 

11 
22% 

7 
14% 

9 
18% 

Slightly misleading claim 
if you aren’t reading 
carefully: 
 
A3C still does better on 
most games across all 
algorithms 
è ES is still beaten by 

other algorithms 
when it beats A3C 

 



EXPERIMENT: CONTINUOUS ACTION TASKS -- MUJOCO 

Simpler tasks: as few as 0.33x samples required 

Harder tasks: at most 10x more samples required 

​# 𝐸𝑆 𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠/# 
𝑇𝑅𝑃𝑂 𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠  

< 1 è Better sampling complexity 
> 1 è Worse sampling complexity 

Sampling complexity:  
How many steps in the environment were needed to reach X% of policy gradient performance? 



SUMMARY: EVOLUTION STRATEGY 
�  ES are a viable alternative to current RL algorithms: 

 
 
 
 

�  ES:  

Treat the problem like a black-box, perturb θ and evaluate fitness F(𝜃): 

 
 

 

�  No potentially incorrect assumptions about credit assignment problem  

(e.g. time horizon γ) 

�  No backprop required 

�  Embarrassingly parallel 

�  Lower GPU memory requirements 

Q-learning: 
Learn the action-value 
function:  

Learn the policy 
directly 

Policy gradient; e.g. TRPO: 


