
INTRODUCTION TO
EVOLUTION STRATEGY
ALGORITHMS
James Gleeson

Eric Langlois

William Saunders

REINFORCEMENT LEARNING CHALLENGES

Credit assignment problem

Bob got a great
bonus this year!

…what did Bob do to
earn his bonus?

𝑓(𝜃) is a discrete
function of theta…
How do we get a
gradient ​𝛻↓θ 𝑓?

Discrete
𝑓(𝜃)

Backprop

Local minima ​𝛻↓θ 𝑓
Sparse reward signal

IDEA:
Lets just treat 𝑓 like a black-box function when optimizing it. like a black-box function when optimizing it.
“Try different θ”, and see what works.
If we find good θ’s, keep them, discard the bad ones.
Recombine ​𝜃↓1  and ​𝜃↓2  to form a new (possibly better) ​𝜃↓3 

Time horizon: 1 year

[+] Met all his deadlines

[+] Took an ML course 3
 years ago

Evolution
strategy

EVOLUTION STRATEGY ALGORITHMS
� The template:

Fitness
Evaluate how well each neural network
performs on a training set.

“Prepare” to sample the new generation:

Given how well each “mutant” performed…

Natural selection! à Keep the good ones

The ones that remain “recombine” to form the
next generation.

“Sample” new generation
Generate some parameter
vectors for your neural
networks.

MNIST ConvNet
parameters

SCARY “TEST FUNCTIONS” (1)

Rastrigin function
Test function Rastrigin function (again)

Lots of local optima; will be difficult to optimize with Backprop + SGD!

SCARY “TEST FUNCTIONS” (2)

Schaffer function

WHAT WE WANT TO DO; “TRY DIFFERENT “
θ

Rastrigin Schaffer

Algorithm: CMA-ES

CMA-ES; HIGH-LEVEL OVERVIEW

Step 1:
Calculate fitness of
current generation 𝑔(1)

Step 2:
Natural selection!

Keep the top 25%.
(purple dots)

Step 3:
Recombine to form the

new generation:

Discrepancy between mean of previous
generation and top 25% will cast a wider
net!

𝑂(​𝜃↑2 )

ES: LESS COMPUTATIONALLY EXPENSIVE
IDEA:
Sample neural-network parameters from

 a multi-variate gaussian w/ diagonal covariance matrix.
Update 𝑁(𝜃=[𝜇, Σ]) parameters using REINFORCE gradient estimate.

𝑂(θ)

Parameters for sampling neural-network
parameters.

Neural-network parameters.

Adaptive σ and µ

ES: __EVEN_LESS__ COMPUTATIONALLY EXPENSIVE

IDEA:
Just use the same σ and 𝜇 for each parameter. for each parameter.
è Sample neural-network parameters from “isotropic gaussian” =𝑁(𝜇, ​𝜎↑2 𝐼)

Distributed computation: minimize communication costs

Each parallel worker evaluates 1 set of neural-network parameters, and they
ONLY communicate their fitness values ​𝐹↓𝑖 =𝑂(1) communicate cost.

Pre-agreed upon random-noise allows
Reconstructing gradient estimates
WITHOUT sending 𝑂(|𝜃|) gradients!

Constant σ and µ

�  IDEA:

Just use the same σ and 𝜇 for each parameter. for each parameter.
è Sample neural-network parameters from “isotropic gaussian”

=𝑁(𝜇, ​𝜎↑2 𝐼)

�  Seems suspiciously simple…but it can compete!

�  OpenAI ES paper:

�  𝜎 is a hyperparameter is a hyperparameter

�  1 set of hyperparameters for Atari

�  1 set of hyperparameters for Mujoco

�  Competes with A3C and TRPO performance

EVOLUTION STRATEGIES AS A
SCALABLE ALTERNATIVE TO
REINFORCEMENT LEARNING
James Gleeson

Eric Langlois

William Saunders

TODAY’S RL LANDSCAPE AND RECENT SUCCESS

Q-learning:

Learn the action-value function:

� Continuous action tasks:
�  “Hopping” locomotion

Learn the policy directly

Policy gradient; e.g. TRPO:

Approximate the function using a neural-network,
train it using gradients computed via backpropagation
(i.e. the chain rule)

� Discrete action tasks:
�  Learning to play Atari from raw pixels

�  Expert-level go player

MOTIVATION: PROBLEMS WITH BACKPROPAGATION
� Backpropagation isn’t perfect:

� You have a datacenter, and cycles to spend

RL problem

� GPU memory requirements

� Difficult to parallelize

� Cannot apply directly to non-differentiable functions
�  e.g. discrete functions 𝐹(𝜃) (the topic of this course)

� Exploding gradient (e.g. for RNN’s)

AN ALTERNATIVE TO BACKPROPAGATION:
EVOLUTION STRATEGY (ES)

And have it be
embarrassingly

parallel?

Proof:

𝐹(𝜃) independent of 𝜖

Gradient of
objective 𝐹(𝜃)

No derivates of 𝐹(𝜃)

No chain rule / backprop required!

𝐹(𝜃) could be a discrete function of θ

Relevant to our course:

Claim:

2nd order Taylor series approximation

THE MAIN CONTRIBUTION OF THIS PAPER
� Criticisms:

� This paper aims to refute your common sense:
� Comparison against state-of-the-art RL algorithms:

�  Atari:
Half the games do better than a recent algorithm (A3C), half the games do
worse

�  Mujoco:
Can match state-of-the-art policy gradients on continuous action tasks.

Linear speedups with more compute nodes: 1 day with A3C è 1 hour with ES

� Evolution strategy aren’t new!

� Common sense:
The variance/bias of this gradient estimator will be
too high, making the algorithm unstable on today’s
problems!

FIRST ATTEMPT AT ES: THE SEQUENTIAL ALGORITHM

Generate n random perturbations of θ

Gradient estimator needed for updating θ:

In RL, the fitness 𝐹(𝜃) is defined as:

Sequentially run each mutant

Compute gradient estimate

Sample:

Embarassingly parallel!
for each 𝑊𝑜𝑟𝑘𝑒​𝑟↓𝑖  𝑖=1..𝑛: :
 𝑊𝑜𝑟𝑘𝑒​𝑟↓𝑖 :computes ​𝐹↓𝑖  in parallel

SECOND ATTEMPT: THE PARALLEL ALGORITHM

� KEY IDEA: Minimize communication cost
avoid sending len(𝜖)=|𝜃|, send len(​𝐹↓𝑖 )=1 instead.

How? Each worker reconstructs random perturbation vector ϵ
 …How? Make initial random seed of 𝑊𝑜𝑟𝑘𝑒​𝑟↓𝑖  globally known.

With ​𝐹↓𝑗  and ​𝜖↓𝑗  known by
everyone,
each worker compute the
same gradient estimate

Embarassingly parallel!

Tradeoff:
redundant computation over
|𝜃| message size

EXPERIMENT: HOW WELL DOES IT SCALE?

� Linearly!
With diminishing returns; often inevitable.

200 cores, 60 minutes

Actual speedup Ideal speedup
(perfectly linear)

Criticism:
Are diminishing returns due to:
•  increased communication

cost from more workers
•  less reduction in variance of

the gradient estimate from
more workers

INTRINSIC DIMENSIONALITY OF THE PROBLEM

Argument:
of update steps in ES scales with the intrinsic dimensionality of θ
needed for the problem, not with the length of θ.

≈ finite differences in some random direction ϵ

E.g. Simple linear regression:
 Double |θ|→| ​θ↑′ |

After adjusting η and σ,
Update step has the same effect.
è Same # of update steps.

​𝜖↓1 

​𝜖↓2 

​𝜖↓1 ∼ ​𝜖↓2 ∼𝑁(𝜇, ​
𝜎↑2 )

Justification:

è # update steps scales with |𝜃|?

WHEN IS ES A BETTER CHOICE THAN POLICY GRADIENTS?
ASIDE: In case you forget; for independent X & Y:

Policy gradients:
Policy network outputs a softmax of
probabilities for different discrete actions,
and we sample an action randomly.

Variance of gradient estimate grows linearly
with the length of the episode.
𝛾 only fixes this for short-term returns! only fixes this for short-term returns!

Independent of episode length.

Evolution strategy (ES):
We randomly perturb our parameters:
then select actions according to

Credit assignment problem
ES makes fewer

(potentially incorrect)
assumptions

How do we compute gradients?

EXPERIMENT: ES ISN’T SENSITIVE TO LENGTH OF EPISODE
� Frame-skip F:

� Agent can select an action every F frames
of input pixels

� E.g. F = 4
frame 1: agent selects an action
frame 1-3: agent is forced to take
 Noop action

IDEA:
artificially inflate the length of an episode τ

Argument:
Since the ES algorithm doesn’t make any assumption about time horizon γ (decaying reward),
it is less sensitive to long episodes τ (i.e. the credit assignment problem)

Playing pong with frameskip

≈ Same policy

τ

EXPERIMENT: LEARNED PERFORMANCE
� The authors looked at:

� discrete action tasks -- Atari

� continuous action tasks -- Mujoco

EXPERIMENT: DISCRETE ACTION TASKS -- ATARI
� Paper’s claim:

“Given the same amount of compute time as other algorithms,
compared to A3C, ES does better on 21 games,
worse on 29 ”

50 games in total

4
8%

Best score: 19
38%

11
22%

7
14%

9
18%

Slightly misleading claim
if you aren’t reading
carefully:

A3C still does better on
most games across all
algorithms
è ES is still beaten by

other algorithms
when it beats A3C

EXPERIMENT: CONTINUOUS ACTION TASKS -- MUJOCO

Simpler tasks: as few as 0.33x samples required

Harder tasks: at most 10x more samples required

​# 𝐸𝑆 𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠/#
𝑇𝑅𝑃𝑂 𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 

< 1 è Better sampling complexity
> 1 è Worse sampling complexity

Sampling complexity:
How many steps in the environment were needed to reach X% of policy gradient performance?

SUMMARY: EVOLUTION STRATEGY
�  ES are a viable alternative to current RL algorithms:

�  ES:

Treat the problem like a black-box, perturb θ and evaluate fitness F(𝜃):

�  No potentially incorrect assumptions about credit assignment problem

(e.g. time horizon γ)

�  No backprop required

�  Embarrassingly parallel

�  Lower GPU memory requirements

Q-learning:
Learn the action-value
function:

Learn the policy
directly

Policy gradient; e.g. TRPO:

