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REINFORCEMENT LEARNING CHALLENGES

is a discrete
function of theta...
How do we get @
gradient

Credit assignment problem

Bob got a great

...what did Bob do to
earn his bonus?¢

Time horizon: 1 year

/-

Backprop ‘%

~

[+] Met all his deadlines

[+] Took an ML course 3

: ears ago
Discrefe Local minima i < .
Sparse reward signal
IDEA.:
Evolution !_‘e’rs ju.s’r treat ”Iike a black-box function when optimizing if.
Try different ", and see what works.
If we find good 's, keep them, discard the bad ones.
Recombine and to form a new (possibly better)

strategy




EVOLUTION STRATEGY ALGORITHMS

The template:

“Sample” new generation MNIST ConvNet
Generate some parameter oarameters
vectors for your neural

91a92: 93
networks.
Fitness

Evaluate how well each neural network
performs on a training set.

“Prepare” to sample the new generation:

Given how well each “mutant” performed... 91693

Natural selection! > Keep the good ones \ /

The ones that remain “recombine” to form the
next generatfion.




SCARY "TEST FUNCTIONS" (1)

/ maximum

A

Rastrigin function

Test function Rastrigin function (again)

Lots of local optima; will be difficult to optimize with Backprop + SGD!




SCARY "TEST FUNCTIONS" (2)

maximum

/

Schaffer function




WHAT WE WANT TO DO; "TRY DIFFERENT "

Schaffer Rastrigin

Algorithm: CMA-ES




CMA-ES; HIGH-LEVEL OVERVIEW

Generate mutants: g(i) + €

€~ N(piy1,2i41)

Step 1: Step 2: Step 3.
Calculate fitness of Natural selection! Recombine fo form the
current generation new generation:
Keep the top 25%.
(purple dots)

Discrepancy between mean of previous
generation and top 25% will cast a wider
netl




ES: LESS COMPUTATIONALLY EXPENSIVE

IDEA:
Sample neural-network parameters from
a multi-variate gaussian w/ diagonal covariance matrix.

Update parameters using REINFORCE gradient estimate.
» Neural-network parameters.

Parameters for sampling neural-network
parameters.

>

VoJ(0) = VoE[F(6)|

= Ey[F(2)Vglogp(2|0)]
N *

~ Y F(z;)Vglogp(z|0)
i—1

/ S5 4 ,
Adaptive and

0 — 0+nVgJ(0)




ES:  EVEN_LESS_ COMPUTATIONALLY EXPENSIVE

IDEA:

Just use the same O and / for each parameter.
= Sample neural-network parameters from “isotropic gaussian”

=N(u, oT2 /)

Seems suspiciously simple...but it can competel
OpenAl ES paper:

o is a hyperparameter

1 set of hyperparameters for Atari —

1 set of hyperparameters for Mujoco Constant  and

Competes with ASC and TRPO performance




REINFORCEMENT



TODAY'S RL LANDSCAPE AND RECENT SUCCESS

Discrete action tasks: Continuous action tasks:
Learning to play Atari from raw pixels “Hopping” locomotion
Expert-level go player

R

Q-learning: Policy gradient; e.g. TRPO:

Learn the action-value function:  Q(s,a) Learn the policy directly  7(als, 0)

Approximate the function using a neural-network,
train it using gradients computed via backpropagation
(i.,e. the chain rule)




MOTIVATION: PROBLEMS WITH BACKPROPAGATION

Backpropagation isn't perfect:
GPU memory requirements
Difficult to parallelize

Cannot apply directly to non-differentiable functions

e.g. discrete functions A(#) (the topic of this course)

Exploding gradient (e.g. for RNN's)

You have a datacenter, and cycles to spend

=y




AN ALTERNATIVE TO BACKPROPAGATION:
EVOLUTION STRATEGY (ES)

— WHRT IF ATOLD YOU |
‘ . And have it be
%F(Q) ~ %EGN}V(O,U?) [eF(6+ €)] | : embarrassingly
‘ \ parallel?
WE GAN ESTIMATE GRADIENTS
Proof: ___ | INITHOUT BACKPROP?
F(0+¢€)~ f(0)+ f'(0) + f"(0)€* /2 2nd order Taylor series approximation
E.[eF(0+¢)] ~ E[eF(0) + € F'(0) + €F"(6)/2]
= E.[e]F(0) + E[¢’]F'(0) + E[¢’]|F" (9) independent of
Ec[(e — p)']
N 2 =K —Ef(e—p? Ellc-m1=0
s ilter) =0 _ 52 for N(u,0?) and odd i
E.[eF(0 +€)] = c*F'(9)
%F(O) = —FE.[eF(0+¢)]
— — > Relevant to our course:
Gradient of No derivates of ] could be a discrete function of

objective No chain rule / backprop required!




THE MAIN CONTRIBUTION OF THIS PAPER

Criticisms:

Evolution strategy aren’t new!

Common sense:

The variance/bias of this gradient estimator will be  %F@+€) ~ ZEeunoon eF (0 + )]
too high, making the algorithm unstable on today'’s

problems!

This paper aims to refute your common sense:

Comparison against state-of-the-art RL algorithms:

Afari:
Half the games do better than a recent algorithm (A3C), half the games do
worse

Mujoco:
Can match state-of-the-art policy gradients on confinuous action tasks.

Linear speedups with more compute nodes: 1 day with A3C = 1 hour with ES




FIRST ATTEMPT AT ES: THE SEQUENTIAL ALGORITHM

Gradient estimator needed for updating

AF[0+ €) ~ L E. 0,02 [€F (0 + €)] —— sample: LeF(8+e)
[

N RL, the fithess is defined as:
F(6) = E,[R,] . v
W Embarassingly parallel!
here: .
for each

7 = An episode of state (s) action (a) pairs .
. : computes in parallel
R. = Sum of rewards received over episode 7

Algorithm 1 Evolution Strategies

1: Input: Learning rate «, noise standard deviation o, initial policy parameters €
2: fort =0.1.2,... do

3: Sample €;....¢, ~ N(0.1I) Generate n random perturbations of
4: | Compute returns F; =F(0; +0¢;)fori =1,...,n | Sequentially run each mutant

b Set 9t+1 — 0 + ”_ Zz—l Fie; Compute gradient estimate

6: end for




SECOND ATTEMPT: THE PARALLEL ALGORITHM

Algorithm 2 Parallelized Evolution Strategies

I: Input: Learning rate «, noise standard deviation o, initial policy parameters 6
2: Initialize: n workers with known random seeds, and initial parameters 6
3:fort=0,1,2,... do

4:  for each worker i =1,...,ndo

5 Sample €; ~ N(0, I)

6 Compute returns F; = F(0; + o¢;
7:  end for
8.
9

) ]- Embarassingly parallel!

Send all scalar returns F; from each worker to every other worker _
With and known by

. foreachworkeri=1,....ndo
10: Reconstruct all perturbations €; for j = 1,...,n using known random seeds everyone,
1: Set 0y41 + 0, + a==>""_, Fje; each worker compute the
12:  end for same gradient estimate
13: end for Tradeoff:
redundant computation over
KEY IDEA: Minimize communication cost message size

avoid sending len(¢)=/4/, send len ({7 )=1 instead.

How? Each worker reconstructs random perturbation vector

...How? Make initial random seed of globally known.




EXPERIMENT: HOW WELL DOES IT SCALE?

Actual speedup Ideal speedup
(perfectly linear)

«— 18 cores, 657 minutes

Median time to solve (minutes)

657m.z'n ~ 11.0x 200cores ~11.1x 10% | 200 cores, minUTeS
60min 18cores
615(;7;11711 ~ 65.7 X 1‘%‘;2:;:7:55 ~ 80.0x 10 1440 cores, 10 minutes —
e . 107 10°
C"hCI.Sm: o Number of CPU cores
Are diminishing returns due fo:
e increased communication Figure 1: Time to reach a score of 6000 on

3D Humanoid with different number of CPU
cores. Experiments are repeated 7 times and
median time 1s reported.

cost from more workers

« lessreduction in variance of
the gradient estimate from
more workers

Linearly!
With diminishing returns; often inevitable.




INTRINSIC DIMENSIONALITY OF THE PROBLEM

5F(0) ~ L Ee N2 [€F(0 + €)] Justification:
F(6)e . E.g. Simple linear regression:
Ee[ o2 ] — Oa Slnce Ee[e] =0 Double /
( F(0+€)—F(0 -
HF(0) ~ Beonoon [m 22 I

’ !
finite differences in some random direction %F(ﬁ) a;, - (:fgf) 3
> # update steps scales with 2 i ~ 4= F(6)
-—l PR
507 =3

After adjusting and
Update step has the same effect.
= Same # of update steps.

Argument:

# of update steps in ES scales with the intrinsic dimensionality of
needed for the problem, not with the length of




WHEN IS ES A BETTER CHOICE THAN POLICY GRADIENTS?

How do we compute gradients? ASIDE: In case you forget; for independent X & Y:
Policy gradients: Var|XY] = E[X2Y?] — E[XY]?
Policy network outputs a soffmax of — E[X?|E[Y?] — E[X]2E[Y]?
probabilities for different discrete actions, 4 Since E[X?] = Var[X] + E[X]?
and we sample an action randomly. = (Var[X] + E[X])?)(Var[Y] + E[Y]?) — E[X]?E[Y]?
VoFpa(0) = Ec{R(a(e,0)) Vo log p(a(e, 0); 0) } = Var(X]Var[Y] + VarX]E[Y]* + Var([Y] E[X]*
~ Var[X|Var[Y]
Evolution strateqy (ES):

We randomly perturb our parameters: 6 — 6
then select actions according to 4

VoFps(0) = E¢ { R(a(¢, 0)) Vs logp(8(¢, 0);0) }

Credit assignment problem L Independent of episode length.

ES m.okes. fewer T Y Variance of gradient estimate grows linearly
(potentially incorrect) Y Vylogp(a,;0) with the length of the episode.
assumpfions t=1 only fixes this for short-term returns!




EXPERIMENT: ES ISN'T SENSITIVE TO LENGTH OF EPISODE

Fr ame-skip F: Playing pong with frameskip
Agent can select an action every F frames "= Fromesim
ot ook = @
E.g.F=4 i M* ‘C
frame 1: agent selects an action «"'“W L '
frame 1-3: agentis forced to take Bl ke

Noop OCTI.O” 0 20 40 60 80 100 120 140

weight updates

IDEA:
artificially inflate the length of an epiSOde T  Figure 2: Learning curves for Pong using

varying frame-skip parameters. Although per-
formance 1s stochastic, each setting leads to
about equally fast learning, with each run con-
verging in around 100 weight updates.

Argument:

Since the ES algorithm doesn’t make any assumption about time horizon (decaying reward),
it is less sensitive to long episodes (i.e. the credit assignment problem)




EXPERIMENT: LEARNED PERFORMANCE

The authors looked af:

discrete action tasks -- Atari

continuous action tasks -- Mujoco




EXPERIMENT: DISCRETE ACTION TASKS -- ATARI

Paper’s claim:

“Glven the same amount of compute fime as other algorithms,
compared to A3C, ES does better on 21 games,

worse on 29 "

Slightly misleading claim
if you aren’t reading
carefully:

A3C still does better on
most games across all

algorithms

= ES is still beaten by
other algorithms
when it beats A3C

50 games in total

Best score: 4 19 11 / 7
8% 38% 22% 14% 18%
Game DON A3CFF 1day HyperNEAT ESFF, | hour A2CFF
Montezuma's Revenge 50.0 53.0 0.0 0.0 0.0
Breakout 303.9 551.6 28 9.5 368.5
Pong 16.2 11.4 17.4 21.0 20.8
Skiing 13700.0 7983.6 154425 15245.8




EXPERIMENT: CONTINUOUS ACTION TASKS -- MUJOCO

Sampling complexity:
How many steps in the environment were needed to reach X% of policy gradient performance?

< 1 =» Better sampling complexity
> 1 =» Worse sampling complexity

Table 1: MuJoCo tasks: Ratio of ES timesteps to TRPO timesteps needed to reach various percentages
of TRPO'’s learning progress at 5 million timesteps.

Environment 25% 50% 75%  100%
HalfCheetah 0.15 049 042 0.58
Hopper 053 3.64 605 694
InvertedDoublePendulum 046 048 0.49 1.23
InvertedPendulum 028 052 0.78 0.88
Swimmer 0.56 047 0.53 0.30
Walker2d 0418 569 8.02 7.88

\4
Harder tasks: at most 10x more samples required

Simpler tasks: as few as 0.33x samples required




SUMMARY: EVOLUTION STRATEGY

ES are a viable alternative to current RL algorithms:
Q-learning: Policy gradient; e.g. TRPO:
ion- Learn the polic
Learn. the action-value Q(s,a) . PAOliCy (als, 0)
function: directly
ES:
Treat the problem like a black-box, perturb 8 and evaluate fitness F(&):
F(6) = E;[R;]
Where:
7 = An episode of state (s) action (a) pairs
R_ = Sum of rewards received over episode 7

No potentially incorrect assumptions about credit assignment problem
(e.g. time horizon Y)

No backprop required

Embarrassingly parallel

Lower GPU memory requirements




