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NeuroSAT

- Goal: Can a neural network learn to solve SAT problems?

- Use MPNN framework that learns to solve SAT problem after only trained
as a classifier to predict satisfiability on a dataset of random SAT problems

- Train with one bit supervision for each SAT problem to indicate whether or
not the problem is satisfiable

- During Test Time, if the solution is satisfiable, the network initially guesses
unsatisfiability with low confidence until it finds a solution at which point it
converges and guesses satisfiability with high confidence




NeuroSAT
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SAT Problem — Satistiable

- Formula of propositional logic: A Boolean expression built using constants true
and false, variables, negations, conjunctions, and disjunctions

- Example:
C (X A X))
© (X A mx)
(X Vx, Vx3)A = (xy A Xy A X3)

- Satisfiable: A formula is satisfiable if there exists a assignment of Boolean values to
1ts variables such that the formula evaluated to 1

- Example:
* (x; A 1 x,) 1s true when x, 1s true and x, i1s false. This is satisfiable
* (x; A = xy) 1s always false for any assignment of x,. This is unsatisfiable.




SAT Problem

- Conjunctive Normal Form (CNF): A formula expressed in a conjunction of
disjunctions of (possibly negated) variables

- Example:

- Every formula has a equisatisfiable Conjunctive Normal Form
- Clause: Each conjunct of a formula in CNF
- Literal: Each variable within a clause

- SAT Problem: Is a formula in CNF, where the goal is to determine if the formula is
satisfiable, and if so, to produce a satisfying assignment of truth values to variables




Message Passing Neural Networks

- Message Passing Neural Networks (MPNNs): A general framework for supervised
learning on graphs

- MPNNSs can be used to operate on undirected graphs G with node features x, and edge
features e,

- The forward pass has two phases:
- Message Passing Phase:
* Runs for T time steps

* Defined in terms of Message function M and vertex update function U

mi“ = Z Mg(hERE | epy)
weN(v)
REFL = Uy (B, mEt)

- Readout Phase:

+ Feature vector for the whole graph using some readout function R

= R({hy |veG}).

source: https://arxiv.org/abs/1704.01212




Message Passing Neural Networks —
example

- A graph 1s constructed matching the
topology of molecule being
fingerprinted

- Each node represents atom and edge
represents bonds

- At each iteration, information flows
between neighbors in the graph

- Finally, each node in the graph turns
on one bit in the fixed-length
fingerprint vector

==

source: Glem et al., 2006
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Model

- Encode the SAT problem as an undirected graph
* One node for every clause and every literal
- Embedding for every literal and every clause
- An edge between every literal and every clause 1t appears in
* An edge between each pair of complementary literals

- NeuroSAT iteratively refines a vector space embedding for each node by
passing messages back and forth along the edges of the graph

- An iteration consists of two stages:

- Each clause receives messages from its neighboring literals and updates its
embedding accordingly

- Each literal receives its message from its neighboring clauses as well from its
complement and update its embedding
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Model

- The embeddings for literal and clause at each time step are represented by

L® e R4 and ) ¢ Rm*d

- Parametrized by three multilayer perceptrons: L

vote

msg? Cmsg and L
- Also parametrized by two-layer LSTMs: L, and C,
- Hidden states of these LSTM are
LYY € R2*d and C\Y) € R™*1
- M 1s the adjacency matrix

M(i,j) = 1{t; € ¢}

- F 1s the operator that takes a matrix L and swaps each row of L with the
corresponding to the literal’s negation




Model

- A single 1teration consist of applying —
(CED, ) = Cu(([C)), MT Lingg (L))
(LD LYY Ly((LSY, F(L®), MCigg (CHD)))

- After T iterations, we compute

LSeT) — Lvole(L(T))
'y(T) — mean(L,{.,T))
- Each literals vote 1s contained in LgT) e R?"

- The average of vote is y7) € R

- We train the network using log likelihood




Training Data

- Create a distribution SR(n) over pair of random SAT problems on n
variables

- One element of the pair 1s satisfiable and other 1s unsatisfiable
- The two differ by negating only a single literal occurrence in a single clause

- To generate a random clause on n variable
- SR(n) first samples a integer & so as to create clauses of variable size
« Then k variables are sampled randomly without replacement
* Finally, negate each one of them with 50% probability
- Keeps generating clauses like this until the problem is unsatisfiable
* So the pair are a sample from SR(n)




Result - Predicting Satisfiability

Trained on: SR(U(10,40))
Trained with: 26 iterations
Tested on:  SR(40)

Tested with: 26 iterations
Overall accuracy: 85%
Accuracy on unsat problems: 96%
Accuracy on sat problems: 73%
Percent of sat problems solved: 70%




Result — Decoding Satisfying

assignment
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Result — Decoding Satisfying
assignment

literal votes Lgﬁl)




Result — Decoding Satisfying
assignment

Figure 4. PCA projections for the high-dimensional literal embed-
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.t ., f c el & ‘e, o0 « %o ‘q_ ‘e indicate literals that are set to 0 and 1 in the satisfying assignment
that it eventually finds, respectively. We see that the blue and red
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IteratIOH transition at the end, at which point they form two distinct clusters

according to the satisfying assignment.

- Decode the solution from NeuroSAT’s internal activation:
- 2-cluster L® to get cluster centers
- Partition the variable according to the predicate —

lzi = Al + (|77 = Aof|® < [l — Aol* + |77 — Aq?
* Then try both candidate assignment

- Decodes a satisfying assignment for over 70% of the satisfiable problem




Result — Generalizing to Bigger
Problems

Generalizing to bigger problems
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Result — Generalizing to Different
Problems

Task Ihvars  felauses  #sat  %osolved
3-color 30 89 350 64%
4-color 40 135 557 69%
5-color 50 191 590 54%
3-clique 30 3890 586 88%
4-clique 40 686 241 96%
5-clique 50 1067 43 28%
2-domset 30 264 278 99%
3-domset 40 454 574 95%

4-domset 50 689 600 100%
4-cover 50 696 128 100%
5-cover 60 976 357 100%
6-cover 70 1301 584 96%
all 45 532 4888 85%




NeuroUNSAT

- NeuroSAT architecture keeps searching for a satisfying assignment non-
systematically for a unsatisfiable problem

- Can train the same architecture with small subset of clauses that are
already unsatisfiable (unsat cores)

- This makes the architecture learn to detect this unsat cores instead of
searching for satisfying assignment

- Generate a new distribution SRC(n,u) and train it on that architecture




Conclusion

- Advantage:

* NeuroSAT can solve substantially larger and more difficult than it ever saw during
training by performing more iteration of message parsing

* The learning process has yielded a procedure that can be run indefinitely to search
for solutions to problems of varying difficulties

- Generalized to completely new domain; i.e. SAT problems encoding any kind of
search problem.

Examples: SAT problems encoding graph coloring, clique detection, dominating set, and
vertex cover problems, all on a range of distributions over small random graphs

+ Same architecture can be used to help find proof for unsatisfiable problems

- Disadvantage: Does not beat state-of-the-art SAT solvers




