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NeuroSAT
• Goal: Can a neural network learn to solve SAT problems?

• Use MPNN framework that learns to solve SAT problem after only trained 
as a classifier to predict satisfiability on a dataset of random SAT problems

• Train with one bit supervision for each SAT problem to indicate whether or 
not the problem is satisfiable 

• During Test Time, if the solution is satisfiable, the network initially guesses 
unsatisfiability with low confidence until it finds  a solution at which point it 
converges and guesses satisfiability with high confidence  



NeuroSAT



SAT Problem – Satisfiable 
• Formula of propositional logic: A Boolean expression built using constants true 

and false, variables, negations, conjunctions, and disjunctions

• Example: 

 (𝑥1 ∧ ¬ 𝑥2)

 (𝑥1 ∧ ¬ 𝑥1)

 (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ ¬ (𝑥1 ∧ 𝑥2 ∧ 𝑥3)

• Satisfiable: A formula is satisfiable if there exists a assignment of Boolean values to 
its variables such that the formula evaluated to 1

• Example: 

 (𝑥1 ∧ ¬ 𝑥2) is true when 𝑥1 is true and 𝑥2 is false. This is satisfiable 

 (𝑥1 ∧ ¬ 𝑥1) is always false for any assignment of 𝑥1 . This is unsatisfiable.  



SAT Problem
• Conjunctive Normal Form (CNF): A formula expressed in a conjunction of 

disjunctions of (possibly negated) variables

• Example: 

 (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ ¬ (𝑥1 ∧ 𝑥2 ∧ 𝑥3) CNF form is 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (¬ 𝑥1 ∨ ¬ 𝑥2 ∨ ¬ 𝑥3)

• Every formula has a equisatisfiable Conjunctive Normal Form 

• Clause: Each conjunct of a formula in CNF 

• Literal: Each variable within a clause 

• SAT Problem: Is a formula in CNF, where the goal is to determine if the formula is 
satisfiable, and if so, to produce a satisfying assignment of truth values to variables 



Message Passing Neural Networks
• Message Passing Neural Networks (MPNNs): A general framework for supervised 

learning on graphs 

• MPNNs can be used to operate on undirected graphs 𝐺 with node features 𝑥𝑣 and edge 
features 𝑒𝑣𝑤. 

• The  forward pass has two phases: 

 Message Passing Phase: 

 Runs for 𝑇 time steps 

 Defined in terms of Message function 𝑀 and vertex update function 𝑈

 Readout Phase:

 Feature vector for the whole graph using some readout function 𝑅

source: https://arxiv.org/abs/1704.01212



Message Passing Neural Networks –
example 
• A graph is constructed matching the 

topology of molecule being 
fingerprinted

• Each node represents atom and edge 
represents bonds 

• At each iteration, information flows 
between neighbors in the graph 

• Finally, each node in the graph turns 
on one bit in the fixed-length 
fingerprint vector 

source: Glem et al., 2006
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Model 
• Encode the SAT problem as an undirected graph 

 One node for every clause and every literal 

 Embedding for every literal and every clause

 An edge between every literal and every clause it appears in 

 An edge between each pair of complementary literals

• NeuroSAT iteratively refines a vector space embedding for each node by 
passing messages back and forth along the edges of the graph 

• An iteration consists of two  stages:

 Each clause receives messages from its neighboring literals and updates its 
embedding accordingly 

 Each literal receives its message from its neighboring clauses as well from its 
complement and update its embedding 



Model 

(a) Stage 1 (b) Stage 2

Graph 

representation of 

{1|2, ത1|ത2}



Model 
• The embeddings for literal and clause at each time step are represented by

• Parametrized by three multilayer perceptrons: Lmsg, Cmsg and Lvote

• Also parametrized by two-layer LSTMs: Lu and Cu  

• Hidden states of these LSTM are 

• M is the adjacency matrix  

• F is the operator that takes a matrix L and swaps each row of L with the 
corresponding to the literal’s negation 



Model 
• A single iteration consist of applying –

• After T iterations, we compute 

• Each literals vote is contained in

• The average of vote is

• We train the network using log likelihood



Training Data
• Create a distribution SR(n) over pair of random SAT problems on n 

variables

• One element of the pair is satisfiable and other is unsatisfiable 

• The two differ by negating only a single literal occurrence in a single clause

• To generate a random clause on n variable

 SR(n) first samples a integer k so as to create clauses of variable size

 Then k variables are sampled randomly without replacement 

 Finally, negate each one of them with 50% probability 

 Keeps generating clauses like this until the problem is unsatisfiable  

 So the pair are a sample from SR(n) 



Result - Predicting Satisfiability 



Result – Decoding Satisfying 
assignment 
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Result – Decoding Satisfying 
assignment 

• Decode the solution from NeuroSAT’s internal activation: 

 2-cluster 𝐿(𝑡) to get cluster centers 

 Partition the variable according to the predicate –

 Then try both candidate assignment 

• Decodes a satisfying assignment for over 70% of the satisfiable problem   



Result – Generalizing to Bigger 
Problems 



Result – Generalizing to Different 
Problems 



NeuroUNSAT
• NeuroSAT architecture keeps searching for a satisfying assignment non-

systematically for a unsatisfiable problem 

• Can train the same architecture with small subset of clauses that are 
already unsatisfiable (unsat cores)

• This makes the architecture learn to detect this unsat cores instead of 
searching for satisfying assignment 

• Generate a new distribution SRC(n,u) and train it on that architecture



Conclusion 
• Advantage:

 NeuroSAT can solve substantially larger and more difficult than it ever saw during 
training by performing more iteration of message parsing 

 The learning process has yielded a procedure that can be run indefinitely to search 
for solutions to problems of varying difficulties

 Generalized to completely new domain; i.e. SAT problems encoding any kind of 
search problem.

 Examples: SAT problems encoding graph coloring, clique detection, dominating set, and 
vertex cover problems, all on a range of distributions over small random graphs

 Same architecture can be used to help find proof for unsatisfiable problems 

• Disadvantage: Does not beat state-of-the-art SAT solvers


