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NeuroSAT
• Goal: Can a neural network learn to solve SAT problems?

• Use MPNN framework that learns to solve SAT problem after only trained 
as a classifier to predict satisfiability on a dataset of random SAT problems

• Train with one bit supervision for each SAT problem to indicate whether or 
not the problem is satisfiable 

• During Test Time, if the solution is satisfiable, the network initially guesses 
unsatisfiability with low confidence until it finds  a solution at which point it 
converges and guesses satisfiability with high confidence  



NeuroSAT



SAT Problem – Satisfiable 
• Formula of propositional logic: A Boolean expression built using constants true 

and false, variables, negations, conjunctions, and disjunctions

• Example: 

 (𝑥1 ∧ ¬ 𝑥2)

 (𝑥1 ∧ ¬ 𝑥1)

 (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ ¬ (𝑥1 ∧ 𝑥2 ∧ 𝑥3)

• Satisfiable: A formula is satisfiable if there exists a assignment of Boolean values to 
its variables such that the formula evaluated to 1

• Example: 

 (𝑥1 ∧ ¬ 𝑥2) is true when 𝑥1 is true and 𝑥2 is false. This is satisfiable 

 (𝑥1 ∧ ¬ 𝑥1) is always false for any assignment of 𝑥1 . This is unsatisfiable.  



SAT Problem
• Conjunctive Normal Form (CNF): A formula expressed in a conjunction of 

disjunctions of (possibly negated) variables

• Example: 

 (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ ¬ (𝑥1 ∧ 𝑥2 ∧ 𝑥3) CNF form is 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (¬ 𝑥1 ∨ ¬ 𝑥2 ∨ ¬ 𝑥3)

• Every formula has a equisatisfiable Conjunctive Normal Form 

• Clause: Each conjunct of a formula in CNF 

• Literal: Each variable within a clause 

• SAT Problem: Is a formula in CNF, where the goal is to determine if the formula is 
satisfiable, and if so, to produce a satisfying assignment of truth values to variables 



Message Passing Neural Networks
• Message Passing Neural Networks (MPNNs): A general framework for supervised 

learning on graphs 

• MPNNs can be used to operate on undirected graphs 𝐺 with node features 𝑥𝑣 and edge 
features 𝑒𝑣𝑤. 

• The  forward pass has two phases: 

 Message Passing Phase: 

 Runs for 𝑇 time steps 

 Defined in terms of Message function 𝑀 and vertex update function 𝑈

 Readout Phase:

 Feature vector for the whole graph using some readout function 𝑅

source: https://arxiv.org/abs/1704.01212



Message Passing Neural Networks –
example 
• A graph is constructed matching the 

topology of molecule being 
fingerprinted

• Each node represents atom and edge 
represents bonds 

• At each iteration, information flows 
between neighbors in the graph 

• Finally, each node in the graph turns 
on one bit in the fixed-length 
fingerprint vector 

source: Glem et al., 2006
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Model 
• Encode the SAT problem as an undirected graph 

 One node for every clause and every literal 

 Embedding for every literal and every clause

 An edge between every literal and every clause it appears in 

 An edge between each pair of complementary literals

• NeuroSAT iteratively refines a vector space embedding for each node by 
passing messages back and forth along the edges of the graph 

• An iteration consists of two  stages:

 Each clause receives messages from its neighboring literals and updates its 
embedding accordingly 

 Each literal receives its message from its neighboring clauses as well from its 
complement and update its embedding 



Model 

(a) Stage 1 (b) Stage 2

Graph 

representation of 

{1|2, ത1|ത2}



Model 
• The embeddings for literal and clause at each time step are represented by

• Parametrized by three multilayer perceptrons: Lmsg, Cmsg and Lvote

• Also parametrized by two-layer LSTMs: Lu and Cu  

• Hidden states of these LSTM are 

• M is the adjacency matrix  

• F is the operator that takes a matrix L and swaps each row of L with the 
corresponding to the literal’s negation 



Model 
• A single iteration consist of applying –

• After T iterations, we compute 

• Each literals vote is contained in

• The average of vote is

• We train the network using log likelihood



Training Data
• Create a distribution SR(n) over pair of random SAT problems on n 

variables

• One element of the pair is satisfiable and other is unsatisfiable 

• The two differ by negating only a single literal occurrence in a single clause

• To generate a random clause on n variable

 SR(n) first samples a integer k so as to create clauses of variable size

 Then k variables are sampled randomly without replacement 

 Finally, negate each one of them with 50% probability 

 Keeps generating clauses like this until the problem is unsatisfiable  

 So the pair are a sample from SR(n) 



Result - Predicting Satisfiability 



Result – Decoding Satisfying 
assignment 
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Result – Decoding Satisfying 
assignment 

• Decode the solution from NeuroSAT’s internal activation: 

 2-cluster 𝐿(𝑡) to get cluster centers 

 Partition the variable according to the predicate –

 Then try both candidate assignment 

• Decodes a satisfying assignment for over 70% of the satisfiable problem   



Result – Generalizing to Bigger 
Problems 



Result – Generalizing to Different 
Problems 



NeuroUNSAT
• NeuroSAT architecture keeps searching for a satisfying assignment non-

systematically for a unsatisfiable problem 

• Can train the same architecture with small subset of clauses that are 
already unsatisfiable (unsat cores)

• This makes the architecture learn to detect this unsat cores instead of 
searching for satisfying assignment 

• Generate a new distribution SRC(n,u) and train it on that architecture



Conclusion 
• Advantage:

 NeuroSAT can solve substantially larger and more difficult than it ever saw during 
training by performing more iteration of message parsing 

 The learning process has yielded a procedure that can be run indefinitely to search 
for solutions to problems of varying difficulties

 Generalized to completely new domain; i.e. SAT problems encoding any kind of 
search problem.

 Examples: SAT problems encoding graph coloring, clique detection, dominating set, and 
vertex cover problems, all on a range of distributions over small random graphs

 Same architecture can be used to help find proof for unsatisfiable problems 

• Disadvantage: Does not beat state-of-the-art SAT solvers


