
Learning a SAT Solver from Single-
Bit Supervision

Daniel Selsman, Matthew Lamm, Benedikt Bunz, Percy Liang,
Leonardo de Moura and David L. Dill

Presented By Aditya Sanghi

Overview
• NeuroSAT

• Background:

 SAT Problem

 Message Passing Neural Networks

• Model

• Training Details

• Model Results:

 Predicting Satisfiability

 Decoding Satisfying Assignments

 Generalizing to other Problem Distribution

• NeuroUNSAT

NeuroSAT
• Goal: Can a neural network learn to solve SAT problems?

• Use MPNN framework that learns to solve SAT problem after only trained
as a classifier to predict satisfiability on a dataset of random SAT problems

• Train with one bit supervision for each SAT problem to indicate whether or
not the problem is satisfiable

• During Test Time, if the solution is satisfiable, the network initially guesses
unsatisfiability with low confidence until it finds a solution at which point it
converges and guesses satisfiability with high confidence

NeuroSAT

SAT Problem – Satisfiable
• Formula of propositional logic: A Boolean expression built using constants true

and false, variables, negations, conjunctions, and disjunctions

• Example:

 (𝑥1 ∧ ¬ 𝑥2)

 (𝑥1 ∧ ¬ 𝑥1)

 (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ ¬ (𝑥1 ∧ 𝑥2 ∧ 𝑥3)

• Satisfiable: A formula is satisfiable if there exists a assignment of Boolean values to
its variables such that the formula evaluated to 1

• Example:

 (𝑥1 ∧ ¬ 𝑥2) is true when 𝑥1 is true and 𝑥2 is false. This is satisfiable

 (𝑥1 ∧ ¬ 𝑥1) is always false for any assignment of 𝑥1 . This is unsatisfiable.

SAT Problem
• Conjunctive Normal Form (CNF): A formula expressed in a conjunction of

disjunctions of (possibly negated) variables

• Example:

 (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ ¬ (𝑥1 ∧ 𝑥2 ∧ 𝑥3) CNF form is 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (¬ 𝑥1 ∨ ¬ 𝑥2 ∨ ¬ 𝑥3)

• Every formula has a equisatisfiable Conjunctive Normal Form

• Clause: Each conjunct of a formula in CNF

• Literal: Each variable within a clause

• SAT Problem: Is a formula in CNF, where the goal is to determine if the formula is
satisfiable, and if so, to produce a satisfying assignment of truth values to variables

Message Passing Neural Networks
• Message Passing Neural Networks (MPNNs): A general framework for supervised

learning on graphs

• MPNNs can be used to operate on undirected graphs 𝐺 with node features 𝑥𝑣 and edge
features 𝑒𝑣𝑤.

• The forward pass has two phases:

 Message Passing Phase:

 Runs for 𝑇 time steps

 Defined in terms of Message function 𝑀 and vertex update function 𝑈

 Readout Phase:

 Feature vector for the whole graph using some readout function 𝑅

source: https://arxiv.org/abs/1704.01212

Message Passing Neural Networks –
example
• A graph is constructed matching the

topology of molecule being
fingerprinted

• Each node represents atom and edge
represents bonds

• At each iteration, information flows
between neighbors in the graph

• Finally, each node in the graph turns
on one bit in the fixed-length
fingerprint vector

source: Glem et al., 2006

Message Passing Neural Networks –
example
• A graph is constructed matching the

topology of molecule being
fingerprinted

• Each node represents atom and edge
represents bonds

• At each iteration, information flows
between neighbors in the graph

• Finally, each node in the graph turns
on one bit in the fixed-length
fingerprint vector

Message Passing Neural Networks –
example
• A graph is constructed matching the

topology of molecule being
fingerprinted

• Each node represents atom and edge
represents bonds

• At each iteration, information flows
between neighbors in the graph

• Finally, each node in the graph turns
on one bit in the fixed-length
fingerprint vector

Message Passing Neural Networks –
example
• A graph is constructed matching the

topology of molecule being
fingerprinted

• Each node represents atom and edge
represents bonds

• At each iteration, information flows
between neighbors in the graph

• Finally, each node in the graph turns
on one bit in the fixed-length
fingerprint vector

Message Passing Neural Networks –
example
• A graph is constructed matching the

topology of molecule being
fingerprinted

• Each node represents atom and edge
represents bonds

• At each iteration, information flows
between neighbors in the graph

• Finally, each node in the graph turns
on one bit in the fixed-length
fingerprint vector

Message Passing Neural Networks –
example
• A graph is constructed matching the

topology of molecule being
fingerprinted

• Each node represents atom and edge
represents bonds

• At each iteration, information flows
between neighbors in the graph

• Finally, each node in the graph turns
on one bit in the fixed-length
fingerprint vector

Message Passing Neural Networks –
example
• A graph is constructed matching the

topology of molecule being
fingerprinted

• Each node represents atom and edge
represents bonds

• At each iteration, information flows
between neighbors in the graph

• Finally, each node in the graph turns
on one bit in the fixed-length
fingerprint vector

Message Passing Neural Networks –
example
• A graph is constructed matching the

topology of molecule being
fingerprinted

• Each node represents atom and edge
represents bonds

• At each iteration, information flows
between neighbors in the graph

• Finally, each node in the graph turns
on one bit in the fixed-length
fingerprint vector

Message Passing Neural Networks –
example
• A graph is constructed matching the

topology of molecule being
fingerprinted

• Each node represents atom and edge
represents bonds

• At each iteration, information flows
between neighbors in the graph

• Finally, each node in the graph turns
on one bit in the fixed-length
fingerprint vector

source: Glem et al., 2006

Model
• Encode the SAT problem as an undirected graph

 One node for every clause and every literal

 Embedding for every literal and every clause

 An edge between every literal and every clause it appears in

 An edge between each pair of complementary literals

• NeuroSAT iteratively refines a vector space embedding for each node by
passing messages back and forth along the edges of the graph

• An iteration consists of two stages:

 Each clause receives messages from its neighboring literals and updates its
embedding accordingly

 Each literal receives its message from its neighboring clauses as well from its
complement and update its embedding

Model

(a) Stage 1 (b) Stage 2

Graph

representation of

{1|2, ത1|ത2}

Model
• The embeddings for literal and clause at each time step are represented by

• Parametrized by three multilayer perceptrons: Lmsg, Cmsg and Lvote

• Also parametrized by two-layer LSTMs: Lu and Cu

• Hidden states of these LSTM are

• M is the adjacency matrix

• F is the operator that takes a matrix L and swaps each row of L with the
corresponding to the literal’s negation

Model
• A single iteration consist of applying –

• After T iterations, we compute

• Each literals vote is contained in

• The average of vote is

• We train the network using log likelihood

Training Data
• Create a distribution SR(n) over pair of random SAT problems on n

variables

• One element of the pair is satisfiable and other is unsatisfiable

• The two differ by negating only a single literal occurrence in a single clause

• To generate a random clause on n variable

 SR(n) first samples a integer k so as to create clauses of variable size

 Then k variables are sampled randomly without replacement

 Finally, negate each one of them with 50% probability

 Keeps generating clauses like this until the problem is unsatisfiable

 So the pair are a sample from SR(n)

Result - Predicting Satisfiability

Result – Decoding Satisfying
assignment

Result – Decoding Satisfying
assignment

Result – Decoding Satisfying
assignment

• Decode the solution from NeuroSAT’s internal activation:

 2-cluster 𝐿(𝑡) to get cluster centers

 Partition the variable according to the predicate –

 Then try both candidate assignment

• Decodes a satisfying assignment for over 70% of the satisfiable problem

Result – Generalizing to Bigger
Problems

Result – Generalizing to Different
Problems

NeuroUNSAT
• NeuroSAT architecture keeps searching for a satisfying assignment non-

systematically for a unsatisfiable problem

• Can train the same architecture with small subset of clauses that are
already unsatisfiable (unsat cores)

• This makes the architecture learn to detect this unsat cores instead of
searching for satisfying assignment

• Generate a new distribution SRC(n,u) and train it on that architecture

Conclusion
• Advantage:

 NeuroSAT can solve substantially larger and more difficult than it ever saw during
training by performing more iteration of message parsing

 The learning process has yielded a procedure that can be run indefinitely to search
for solutions to problems of varying difficulties

 Generalized to completely new domain; i.e. SAT problems encoding any kind of
search problem.

 Examples: SAT problems encoding graph coloring, clique detection, dominating set, and
vertex cover problems, all on a range of distributions over small random graphs

 Same architecture can be used to help find proof for unsatisfiable problems

• Disadvantage: Does not beat state-of-the-art SAT solvers

