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What recently became easy
N machine learning”?

Training continuous latent-
variable models (VAEs, GANSs)
to produce large images

Training large supervised
models with fixed
architectures

Building RNNs that can output
grid-structured objects
(images, waveforms)
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What is still hard?

Training GANSs to generate text
Training VAEs with discrete latent variables

Training agents to communicate with each other using
words

Training agent or programs to decide which discrete
action to take.

Training generative models of structured objects of
arbitrary size, like programs, graphs, or large texts.



Level | Model | PTB CMU-SE
what everything they take everything away | <s>will you have two moment ? </s>
from .
may tea bill is the best chocolate from | <s>1 need to understand deposit length .
LSTM | emergency . </[s>
can you show show if any fish left inside . | <s>how is the another headache ? </s>
Word room service , have my dinner please . <s>how there , is the restaurant popular this
cheese 7 </s>
meanwhile henderson said that it has to | <s>1’d like to fax a newspaper . </s>
CNN bounce for.

I’m at the missouri burning the indexing
manufacturing and through .

<s>cruise pay the next in my replacement .
</s>
<s>what ’s in the friday food ? ? </s>

Table 4: Word level generations on the Penn Treebank and CMU-SE datasets

Adversarial Generation of Natural Language.
Sail Rajeswar, Sandeep Subramanian, Francis Dutil,
Christopher Pal, Aaron Courville, 2017
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“We successtully trained the RL-NTM to solve a number of
algorithmic tasks that are simpler than the ones solvable by

the fully differentiable NTM.”
Reinforcement Learning Neural Turing Machines

Wojciech Zaremba, llya Sutskever, 2015




Why are the easy things easy”

Gradient Descent

* (Gradients give more
information the more
parameters you have

* Backprop (reverse-mode AD) n
only takes about as long as
the original function
e -
W

* Local optima less of a
problem than you think




Why are the hard things hard?

Discrete structure means we

can't use backdrop to get TRYING T TUMP FRoM
gradients | BLCKTO BUOCK N

| FOUR DIMENSIONS
No cheap gradients means HURT MY BRAIN.

that we don't know which
direction to move to improve

4

Not using our knowledge of
the structure of the function 1
being optimized

Becomes as hard as
optimizing a black-box . 2
function




This course;
How can we optimize anyways”

e This course is about how to optimize or integrate out
parameters even when we don't have backprop

* And, what could we do if we knew how? Discover models,
learn algorithms, choose architectures

 Not necessarily the same as discrete optimization - we
often want to optimize continuous parameters that might be
used to make discrete choices.

* Focus will be on gradient estimators that use some
structure of the function being optimized, but lots doesn't fit
in this framework. Also, want automatic methods (no GAS)



T'hings we can do with
learned discrete
structures



Figure 2: Examples of tree structures learned by our model which show that the model discovers
simple concepts such as noun phrases and verb phrases.

Figure 3: Examples of unconventional tree structures.

Learning to Compose Words into Sentences with Reinforcement Learning
Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, Wang Ling,
2016



String s;
BufferedReader Dbr;
FileReader fr;
try {
fr = new FileReader ($String);
br = new BufferedReader (fr);
while ((s = br.readLine()) != null) {}
br.close();
} ecatch (FileNotFoundException _e) {
_e.printStackTrace () ;
} catch (IOException _e) {
_e.printStackTrace();

}

(a)

String s;
BufferedReader br;
FileReader fr;
try {
fr = new FileReader ($File);
br = new BufferedReader (fr);
while ((s = br.readLine()) != null) {}
br.close();
} catch (FileNotFoundException _e) {
} catch (IOException _e) {

}

(b)

Figure 7: Programs generated in a typical run of BAYOU, given the API method name readLine

and the type FileReader.
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Neural Sketch
Learning for
Conditional Program
Generation, ICLR
2018 submission
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Generating and designing DNA with deep generative
models. Killoran, Lee, Delong, Duvenaud, Frey, 2017
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Grammar VAE

Matt Kusner, Brooks Paige, José Miguel Hernandez-Lobato
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Attend, Infer, Repeat: Fast Scene
Understanding with Generative
Models

S.M. Eslami,N. Heess, T. Weber, Y. Tassa, D. Szepesvari,
K.Kavukcuoglu, G. E. Hinton
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Hara attention models

Want large or variable-sized
memories or ‘'scratch pads’
Soft attention is a good \ m

? ~ bird

computational substrate, Input image: )

: : : HxWx3 Cropped and
scales linearly O(N) with size rescaled image:

XxYx3
Of mOdel Box Coordinates:
(xc, yc, w, h) Not a differentiable function !

Want O(1) read/write ‘

S C Can't train with backprop :(
This i1s “hard attention

Source: http://imatge-upc.qgithub.io/telecombcn-2016-dlcv/slides/D4l 6-attention.pdf



http://imatge-upc.github.io/telecombcn-2016-dlcv/slides/D4L6-attention.pdf
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Fig 3: Samples from the CIBP-based prior on network structures, with five visible
units.

Learning the Structure of Deep Sparse Graphical Models
Ryan Prescott Adams, Hanna M. Wallach, Zoubin Ghahramani, 2010
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Figure 23: Ponder Time, Prediction loss and Prediction Entropy During a Wikipedia Text Sequence. Plot created using
a network trained with 7 = 6e~3

Adaptive Computation Time for Recurrent Neural Networks
Alex Graves, 2016





















Modeling idea: graphical models on latent variables,
neural network models for observations
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Composing graphical models with neural networks for structured representations
and fast inference. Johnson, Duvenaud, Wiltschko, Datta, Adams, NIPS 2016




data space latent space
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Canonical correlations analysis admixture / LDA / NMF

[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005.

[2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001.

[3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003.

[4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000.

[5] Jordan and Jacobs. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation 1994,

[6] Bengio and Frasconi. An Input Output HMM Architecture. NIPS 1995.

[7] Ghahramani and Jordan. Factorial Hidden Markov Models. Machine Learning 1997.

[8] Bach and Jordan. A probabilistic interpretation of Canonical Correlation Analysis. Tech. Report 2005.

[9] Archambeau and Bach. Sparse probabilistic projections. NIPS 2008.

[10] Hoffman, Bach, Blei. Online learning for Latent Dirichlet Allocation. NIPS 2010. Courtesy of Matthew Johnson



Probabilistic graphical models Deep learning

+ structured representations — neural net "goo”

+ priors and uncertainty — difficult parameterization
+ data and computational efficiency — can require lots of data
— rigid assumptions may not fit + flexible

— feature engineering + feature learning

— top-down inference + recognition networks



Today: Overview and intro

Motivation and overview
Structure of course

Project ideas

Ungraded background quiz

Actual content: History, state of the field,
REINFORCE and reparameterization trick



Structure of course

* | give first two lectures

 Next 7 lectures mainly student presentations
* each covers 5-10 papers on a given topic
* will finalize and choose topics next week

e Last 2 lectures will be project presentations



Student lectures

7/ weeks, 84 people(!) about 10 people each week.
Each day will have one theme, 5-10 papers

Divided into 4-5 presentations of about 20 mins
each

Explain main idea, scope, relate to previous work
and future directions

Meet me on Friday or Monday before to organize



Grading structure

15% One assignment on gradient estimators
15% Class presentations

15% Project proposal

15% Project presentation

40% Project report and code



Assignment

Q1: Show REINFORCE is unbiased. Add different control variates/
baselines and see what happens.

Q2: Derive variance of REINFORCE, reparam trick, etc, and how it grows
with the dimension of the problem.

Q3: Show that stochastic policies are suboptimal in some cases, optimal in
others.

Q4: Pros and cons of different ways to represent discrete distributions.
Bonus 1: Derive optimal surrogates for REBAR, LAX, RELAX
Bonus 2: Derive optimal reparameterization for a Gaussian

Hints galore



Tentative Course Dates

Assignment due Feb. 1

Project proposal due Feb. 15

* ~2 pages, typeset, include preliminary lit search
Project Presentations: March 16th and 23rd

Projects due: mid-April



|_earning outcomes

How to optimize and integrate in settings where we
can't just use backprop

Familiarity with the recent generative models and
RL literature

Practice giving presentations, reading and writing
papers, doing research

|[deally: Original research, and most of a NIPS
submission!



Project [deas - Easy

Compare different gradient estimators in an RL
setting.

Compare different gradient estimators in a
variational optimization setting.

Write a distill article with interactive demos.

Write a lit review, putting different methods in the
same framework.



Project Ideas - medium

Train GANs to produce text or graphs.

Train huge HMM with O(KT) cost per iteration [like van den Oord et
al.,2017]

Train a model with hard attention, or different amounts of compute
depending on input. [e.g. Graves 2016]

A theory paper analyzing the scalability of ditferent estimators in
different settings.

Meta-learning with discrete choices at both levels

Train a VAE with continuous latents but with a non-differentiable
decoder (e.g. a renderer), or surrogate loss for text



Project Ideas - hard

Build a VAE with discrete latent variables of different size
depending on input. E.g. latent lists, trees, graphs.

Build a GAN that outputs discrete variables of variable size.
E.Q. lists, trees, graphs, programs

Fit a hierarchical latent variable model to a single dataset (a la
Tenenbaum, or Grosse)

Propose and examine new gradient estimator / optimizer /
MCMC alg.

Theory paper: Unity existing algorithms, or characterize their
behavior



Ungraded Quiz



Next week:
Advanced gradient estimators

 Most mathy lecture of the course
* Should prep you and give context for for A1
* Only calculus and probability

* Not as scary as it looks!



|_ecture O:;
State of the field and
pasic gradient estimators



History of Generative Models

1940s - 1960s Motivating probability and Bayesian inference
1980s - 2000s Bayesian machine learning with MCMC
1990s - 2000s Graphical models with exact inference

1990s - 2015 Bayesian Nonparametrics with MCMC (Indian Buffet
process, Chinese restaurant process)

1990s - 2000s Bayesian ML with mean-field variational inference

1995 -1996 Helmholtz machine, wake-sleep (almost invented
variational autoencoders)

2000s - 2013 Deep undirected graphical models (RBMs,
pretraining)

2000s - 2013 Autoencoders, denoising autoencoders



Modern Generative Models

* 2000s - Probabilistic Programming
 2000s - Invertible density estimation
* 2010 - Stan - Bayesian Data Analysis with HMC

* 2013 - Variational autoencoders, reparamaterization trick
becomes widely known

* 2014 - Generative adversarial nets
* 2015 - Deep reinforcement learning

2016 - New gradient estimators (muprop, Q-prop, concrete +
Gumbel-softmax, REBAR, RELAX)



Differentiable models

 Model distributions implicitly by a variable pushed
through a deep net:

y = fo(T)

* Approximate intractable distribution by a tractable
distribution parameterized by a deep net:

p(ylr) = N(ylp = fo(z),X = go(x))

* Optimize all parameters using stochastic gradient
descent
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smiling neutral neutral
woman woman man

smiling man

Unsupervised Representation Learning with Deep Convolutional Generative
Adversarial Networks. Alec Radford, Luke Metz, Soumith Chintala, 2015



Advantages of |latent
variaple models

Model checking by sampling
Natural way to specity models
Compact representations
Semi-Supervised learning

Understanding factors of variation in data



State of the field

* Big lesson of deep learning:
stochastic gradient-based
optimization scales well to
millions of parameters

* Easy to train supervised and
unsupervised models this way,
if everything is continuous
which allows
reparameterization.

* Now, we're hitting the limits of
this modeling style

L STATISTICAL LEARNING \

Gentlemen, our learner
overgeneralizes because the
C-Dimension of our Kernel
s too high, Get some
experts and minimze the
structural risk in a new one.
Rework our loss function,
ake the next kernel stable,

LE/
NETWORKS
STACK V/} ‘
MORE :

LAY E RS LAYERS ZL




Original form Reparameterised form

|
~q(Zlox)
|
|

| e e e e e e e e e e e e e e e
. Deterministic node Kingma, 2013]
Bengio, 2013]
. Kingma and Welling 2014]
‘ - Random node Rezende et al 2014]

Source: Kingma'’s NIPS 2015 workshop slides



SCORE-FUNCTION ESTIMATOR
(“REH\IFORCE” WILLIAMS 75

6’

These slides by Geoff Roeder



SCORE-FUNCTION ESTIMATOR
("REINFORCE", WILLIAMS 1992)

o 0
90 Cp(bj0).f (b) = / ‘

= Lp(b]6)

* Log-derivative trick allows us to rewrite gradient of expectation as expectation of gradient
(under weak regularity conditions)



SCORE-FUNCTION ESTIMATOR
("REINFORCE", WILLIAMS 1992)
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* Log-derivative trick allows us to rewrite gradient of expectation as expectation of gradient
(under weak regularity conditions)

* Yields unbiased, but high variance estimator



REPARAME TERIZATION TRICK

Sl ML —

» Requires function to be known and differentiable

» Requires distribution p(b|@) to be
reparameterizable through a transformation 7 (6, ¢)

- Unbiased; lower variance empirically



CONCRETE REPARAMETERIZATION

i

gcon [f(D)] = %f(b) T 9oy (2)

—— o —— —

* Biased estimator

 \Works well with careful

| » lemperature parameter A\
hyper parameter choices P P

- Requires J to be known and

* Lower variance than score- it e
function estimator due to
reparameterization » Requires p(b|@) to be

reparamaterizable



REBAR
(TUCKER ET AL.2017)

Improves over concrete distribution (rebar is stronger than concrete)

Uses continuous relaxation of discrete random variables (concrete)
to build unbiased, lower-variance gradient estimator

Using the reparameterization from the Concrete distribution,
construct a control variate for the score-function estimator

Show how tune additional parameters of the estimator (e.g,
temperature A) online



Digression: control variates for Monte Carlo estimators



EON | ROL VARIATES
DIGRESSION

Gnew(b) = g(b) + 1 (c(b) — Epgyc(b)])
g Cov|g, c|

AN

* New estimator Is equal In expectation to old estimator (bias Is

unchanged)
* Variance is reduced when |corr(c, g)| > O

- We exploit the difference between the function ¢ and rts known
mean during optimization to “correct’’ the value of the estimator




CONTROLVARIATES:
FREE-FORM

Gnew(b) = §(b) — c4(b) + Epp) [co(D)]

* |t we choose a neural network as our parameterized differentiable
function, then the above formulation can be simplified to the above

 [he scaling constant will be absorbed into the weights of the
network, and optimality 1s determined by training

- How should we update the weights of the free-form control variate!



High-dimensional Bayesopt?

e Bayesian optimization
doesn’t really work in 50
dimensions

e BNN instead of GP?




