
STA 4273 / CSC 2547
Spring 2018

Learning Discrete Latent Structure

What recently became easy
in machine learning?

• Training continuous latent-
variable models (VAEs, GANs)
to produce large images

• Training large supervised
models with fixed
architectures

• Building RNNs that can output
grid-structured objects
(images, waveforms)

What is still hard?
• Training GANs to generate text

• Training VAEs with discrete latent variables

• Training agents to communicate with each other using
words

• Training agent or programs to decide which discrete
action to take.

• Training generative models of structured objects of
arbitrary size, like programs, graphs, or large texts.

Adversarial Generation of Natural Language.
Sai Rajeswar, Sandeep Subramanian, Francis Dutil,

Christopher Pal, Aaron Courville, 2017

“We successfully trained the RL-NTM to solve a number of
algorithmic tasks that are simpler than the ones solvable by

the fully differentiable NTM.”
Reinforcement Learning Neural Turing Machines

Wojciech Zaremba, Ilya Sutskever, 2015

Why are the easy things easy?

• Gradients give more
information the more
parameters you have

• Backprop (reverse-mode AD)
only takes about as long as
the original function

• Local optima less of a
problem than you think

Why are the hard things hard?
• Discrete structure means we

can’t use backdrop to get
gradients

• No cheap gradients means
that we don’t know which
direction to move to improve

• Not using our knowledge of
the structure of the function
being optimized

• Becomes as hard as
optimizing a black-box
function

This course:
How can we optimize anyways?
• This course is about how to optimize or integrate out

parameters even when we don’t have backprop

• And, what could we do if we knew how? Discover models,
learn algorithms, choose architectures

• Not necessarily the same as discrete optimization - we
often want to optimize continuous parameters that might be
used to make discrete choices.

• Focus will be on gradient estimators that use some
structure of the function being optimized, but lots doesn’t fit
in this framework. Also, want automatic methods (no GAs)

Things we can do with
learned discrete

structures

Learning to Compose Words into Sentences with Reinforcement Learning
Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, Wang Ling,

2016

Neural Sketch
Learning for

Conditional Program
Generation, ICLR
2018 submission

Generating and designing DNA with deep generative
models. Killoran, Lee, Delong, Duvenaud, Frey, 2017

Grammar VAE
Matt Kusner, Brooks Paige, José Miguel Hernández-Lobato

Differential AIR

17

Attend, Infer, Repeat: Fast Scene
Understanding with Generative

Models
S.M. Eslami,N. Heess, T. Weber, Y. Tassa, D. Szepesvari,

K.Kavukcuoglu, G. E. Hinton

Nicolas Brandt nbrandt@cs.toronto.edu

A group of people are watching a dog ride

(Jamie Kyros)

Hard attention models
• Want large or variable-sized

memories or ‘scratch pads’

• Soft attention is a good
computational substrate,
scales linearly O(N) with size
of model

• Want O(1) read/write

• This is “hard attention”

Source: http://imatge-upc.github.io/telecombcn-2016-dlcv/slides/D4L6-attention.pdf

http://imatge-upc.github.io/telecombcn-2016-dlcv/slides/D4L6-attention.pdf

Learning the Structure of Deep Sparse Graphical Models
Ryan Prescott Adams, Hanna M. Wallach, Zoubin Ghahramani, 2010

Adaptive Computation Time for Recurrent Neural Networks
Alex Graves, 2016

Modeling idea: graphical models on latent variables,

neural network models for observations

Composing graphical models with neural networks for structured representations
and fast inference. Johnson, Duvenaud, Wiltschko, Datta, Adams, NIPS 2016

data space latent space

[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005.
[2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001.
[3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003.
[4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000.
[5] Jordan and Jacobs. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation 1994.
[6] Bengio and Frasconi. An Input Output HMM Architecture. NIPS 1995.
[7] Ghahramani and Jordan. Factorial Hidden Markov Models. Machine Learning 1997.
[8] Bach and Jordan. A probabilistic interpretation of Canonical Correlation Analysis. Tech. Report 2005.
[9] Archambeau and Bach. Sparse probabilistic projections. NIPS 2008.
[10] Hoffman, Bach, Blei. Online learning for Latent Dirichlet Allocation. NIPS 2010.

[1] [2] [3] [4]

Gaussian mixture model Linear dynamical system Hidden Markov model Switching LDS

[8,9] [10]

Canonical correlations analysis admixture / LDA / NMF

[6][2][5]

Mixture of Experts Driven LDS IO-HMM Factorial HMM

[7]

Courtesy of Matthew Johnson

Probabilistic graphical models

 + structured representations

 + priors and uncertainty

 + data and computational efficiency

 – rigid assumptions may not fit

 – feature engineering

 – top-down inference

Deep learning

 – neural net “goo”

 – difficult parameterization

 – can require lots of data

 + flexible

 + feature learning

 + recognition networks

Today: Overview and intro
• Motivation and overview

• Structure of course

• Project ideas

• Ungraded background quiz

• Actual content: History, state of the field,
REINFORCE and reparameterization trick

Structure of course
• I give first two lectures

• Next 7 lectures mainly student presentations

• each covers 5-10 papers on a given topic

• will finalize and choose topics next week

• Last 2 lectures will be project presentations

Student lectures
• 7 weeks, 84 people(!) about 10 people each week.

• Each day will have one theme, 5-10 papers

• Divided into 4-5 presentations of about 20 mins
each

• Explain main idea, scope, relate to previous work
and future directions

• Meet me on Friday or Monday before to organize

Grading structure
• 15% One assignment on gradient estimators

• 15% Class presentations

• 15% Project proposal

• 15% Project presentation

• 40% Project report and code

Assignment
• Q1: Show REINFORCE is unbiased. Add different control variates/

baselines and see what happens.

• Q2: Derive variance of REINFORCE, reparam trick, etc, and how it grows
with the dimension of the problem.

• Q3: Show that stochastic policies are suboptimal in some cases, optimal in
others.

• Q4: Pros and cons of different ways to represent discrete distributions.

• Bonus 1: Derive optimal surrogates for REBAR, LAX, RELAX

• Bonus 2: Derive optimal reparameterization for a Gaussian

• Hints galore

Tentative Course Dates

• Assignment due Feb. 1

• Project proposal due Feb. 15

• ~2 pages, typeset, include preliminary lit search

• Project Presentations: March 16th and 23rd

• Projects due: mid-April

Learning outcomes
• How to optimize and integrate in settings where we

can’t just use backprop

• Familiarity with the recent generative models and
RL literature

• Practice giving presentations, reading and writing
papers, doing research

• Ideally: Original research, and most of a NIPS
submission!

Project Ideas - Easy
• Compare different gradient estimators in an RL

setting.

• Compare different gradient estimators in a
variational optimization setting.

• Write a distill article with interactive demos.

• Write a lit review, putting different methods in the
same framework.

Project ideas - medium
• Train GANs to produce text or graphs.

• Train huge HMM with O(KT) cost per iteration [like van den Oord et
al.,2017]

• Train a model with hard attention, or different amounts of compute
depending on input. [e.g. Graves 2016]

• A theory paper analyzing the scalability of different estimators in
different settings.

• Meta-learning with discrete choices at both levels

• Train a VAE with continuous latents but with a non-differentiable
decoder (e.g. a renderer), or surrogate loss for text

Project ideas - hard
• Build a VAE with discrete latent variables of different size

depending on input. E.g. latent lists, trees, graphs.

• Build a GAN that outputs discrete variables of variable size.
E.g. lists, trees, graphs, programs

• Fit a hierarchical latent variable model to a single dataset (a la
Tenenbaum, or Grosse)

• Propose and examine new gradient estimator / optimizer /
MCMC alg.

• Theory paper: Unify existing algorithms, or characterize their
behavior

Ungraded Quiz

Next week:
Advanced gradient estimators

• Most mathy lecture of the course

• Should prep you and give context for for A1

• Only calculus and probability

• Not as scary as it looks!

Lecture 0:
State of the field and

basic gradient estimators

History of Generative Models
• 1940s - 1960s Motivating probability and Bayesian inference

• 1980s - 2000s Bayesian machine learning with MCMC

• 1990s - 2000s Graphical models with exact inference

• 1990s - 2015 Bayesian Nonparametrics with MCMC (Indian Buffet
process, Chinese restaurant process)

• 1990s - 2000s Bayesian ML with mean-field variational inference

• 1995 -1996 Helmholtz machine, wake-sleep (almost invented
variational autoencoders)

• 2000s - 2013 Deep undirected graphical models (RBMs,
pretraining)

• 2000s - 2013 Autoencoders, denoising autoencoders

Modern Generative Models
• 2000s - Probabilistic Programming

• 2000s - Invertible density estimation

• 2010 - Stan - Bayesian Data Analysis with HMC

• 2013 - Variational autoencoders, reparamaterization trick
becomes widely known

• 2014 - Generative adversarial nets

• 2015 - Deep reinforcement learning

• 2016 - New gradient estimators (muprop, Q-prop, concrete +
Gumbel-softmax, REBAR, RELAX)

Differentiable models
• Model distributions implicitly by a variable pushed

through a deep net:

• Approximate intractable distribution by a tractable
distribution parameterized by a deep net:

• Optimize all parameters using stochastic gradient
descent

y = f✓(x)

p(y|x) = N (y|µ = f✓(x),⌃ = g✓(x))

Density estimation using Real NVP. Ding et al, 2016

Density estimation using Real NVP. Ding et al, 2016

Unsupervised Representation Learning with Deep Convolutional Generative
Adversarial Networks. Alec Radford, Luke Metz, Soumith Chintala, 2015

Advantages of latent
variable models

• Model checking by sampling

• Natural way to specify models

• Compact representations

• Semi-Supervised learning

• Understanding factors of variation in data

State of the field
• Big lesson of deep learning:

stochastic gradient-based
optimization scales well to
millions of parameters

• Easy to train supervised and
unsupervised models this way,
if everything is continuous
which allows
reparameterization.

• Now, we’re hitting the limits of
this modeling style

 Source: Kingma’s NIPS 2015 workshop slides

SCORE-FUNCTION ESTIMATOR
(“REINFORCE”, WILLIAMS 1992)

• We can estimate this quantity with Monte Carlo integration:

• High variance: convergence to good solution challenging

@

@✓
Ep(b|✓)f(b) =

Z
@

@✓
p(b|✓)f(b)d✓

= Ep(b|✓)


f(b)

@

@✓
log p(b|✓)

�

These slides by Geoff Roeder

SCORE-FUNCTION ESTIMATOR
(“REINFORCE”, WILLIAMS 1992)

• Log-derivative trick allows us to rewrite gradient of expectation as expectation of gradient
(under weak regularity conditions)

• We can estimate this quantity with Monte Carlo integration:

• High variance: convergence to good solution challenging

@

@✓
Ep(b|✓)f(b) =

Z
@

@✓
p(b|✓)f(b)d✓

= Ep(b|✓)


f(b)

@

@✓
log p(b|✓)

�

SCORE-FUNCTION ESTIMATOR
(“REINFORCE”, WILLIAMS 1992)

• Log-derivative trick allows us to rewrite gradient of expectation as expectation of gradient
(under weak regularity conditions)

• Yields unbiased, but high variance estimator

ĝSF = f(b)
@

@✓
log p(b|✓)

@

@✓
Ep(b|✓)f(b) =

Z
@

@✓
p(b|✓)f(b)d✓

= Ep(b|✓)


f(b)

@

@✓
log p(b|✓)

�

REPARAMETERIZATION TRICK

• Requires function to be known and differentiable

• Requires distribution to be
reparameterizable through a transformation

• Unbiased; lower variance empirically

gREP [f(b)] =
@

@✓
f(b) =

@f

@T
@T
@✓

, b = T (✓, ✏), ✏ ⇠ p(✏)

p(b|✓)
T (✓, ✏)

CONCRETE REPARAMETERIZATION
(MADDISON ET AL. 2016)

• Works well with careful
hyper parameter choices

• Lower variance than score-
function estimator due to
reparameterization

• Biased estimator

• Temperature parameter

• Requires to be known and
differentiable

• Requires to be
reparamaterizable

gCON [f(b)] =
@

@✓
f(b) =

@f

@��(z)

@��(z)

@✓
, z = T (✓, ✏), ✏ ⇠ p(✏)

�

f

p(b|✓)

REBAR
(TUCKER ET AL. 2017)

• Improves over concrete distribution (rebar is stronger than concrete)

• Uses continuous relaxation of discrete random variables (concrete)
to build unbiased, lower-variance gradient estimator

• Using the reparameterization from the Concrete distribution,
construct a control variate for the score-function estimator

• Show how tune additional parameters of the estimator (e.g.,
temperature) online�

Digression: control variates for Monte Carlo estimators

CONTROL VARIATES:
DIGRESSION

• New estimator is equal in expectation to old estimator (bias is
unchanged)

• Variance is reduced when |corr(c, g)| > 0

• We exploit the difference between the function c and its known
mean during optimization to “correct” the value of the estimator

ĝnew(b) = ĝ(b)� ⌘
�
c(b)� Ep(b)[c(b)]

�

⌘? = �Cov[ĝ, c]

Var[ĝ]

CONTROL VARIATES:
FREE-FORM

• If we choose a neural network as our parameterized differentiable
function, then the above formulation can be simplified to the above

• The scaling constant will be absorbed into the weights of the
network, and optimality is determined by training

• How should we update the weights of the free-form control variate?

ĝnew(b) = ĝ(b)� c�(b) + Ep(b) [c�(b)]

High-dimensional Bayesopt?

• Bayesian optimization
doesn’t really work in 50
dimensions

• BNN instead of GP?

