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Learning Discrete Latent Structure



What recently became easy 
in machine learning?

• Training continuous latent-
variable models (VAEs, GANs) 
to produce large images 

• Training large supervised 
models with fixed 
architectures 

• Building RNNs that can output 
grid-structured objects 
(images, waveforms)



What is still hard?
• Training GANs to generate text 

• Training VAEs with discrete latent variables 

• Training agents to communicate with each other using 
words 

• Training agent or programs to decide which discrete 
action to take. 

• Training generative models of structured objects of 
arbitrary size, like programs, graphs, or large texts.



Adversarial Generation of Natural Language. 
Sai Rajeswar, Sandeep Subramanian, Francis Dutil, 

Christopher Pal, Aaron Courville, 2017



“We successfully trained the RL-NTM to solve a number of 
algorithmic tasks that are simpler than the ones solvable by 

the fully differentiable NTM.” 
Reinforcement Learning Neural Turing Machines 

Wojciech Zaremba, Ilya Sutskever, 2015



Why are the easy things easy?

• Gradients give more 
information the more 
parameters you have 

• Backprop (reverse-mode AD) 
only takes about as long as 
the original function 

• Local optima less of a 
problem than you think



Why are the hard things hard?
• Discrete structure means we 

can’t use backdrop to get 
gradients 

• No cheap gradients means 
that we don’t know which 
direction to move to improve 

• Not using our knowledge of 
the structure of the function 
being optimized 

• Becomes as hard as 
optimizing a black-box 
function



This course: 
How can we optimize anyways?
• This course is about how to optimize or integrate out 

parameters even when we don’t have backprop 

• And, what could we do if we knew how?  Discover models, 
learn algorithms, choose architectures 

• Not necessarily the same as discrete optimization - we 
often want to optimize continuous parameters that might be 
used to make discrete choices. 

• Focus will be on gradient estimators that use some 
structure of the function being optimized, but lots doesn’t fit 
in this framework.  Also, want automatic methods (no GAs)



Things we can do with 
learned discrete 

structures



Learning to Compose Words into Sentences with Reinforcement Learning 
Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, Wang Ling, 

2016



Neural Sketch 
Learning for 

Conditional Program 
Generation, ICLR 
2018 submission



Generating and designing DNA with deep generative 
models. Killoran, Lee, Delong, Duvenaud, Frey, 2017



Grammar VAE
Matt Kusner, Brooks Paige, José Miguel Hernández-Lobato



Differential AIR

17

Attend, Infer, Repeat: Fast Scene 
Understanding with Generative 

Models
S.M. Eslami,N. Heess, T. Weber, Y. Tassa, D. Szepesvari, 

K.Kavukcuoglu, G. E. Hinton

Nicolas Brandt nbrandt@cs.toronto.edu



A group of people are watching a dog ride 

(Jamie Kyros)



Hard attention models
• Want large or variable-sized 

memories or ‘scratch pads’ 

• Soft attention is a good 
computational substrate, 
scales linearly O(N) with size 
of model 

• Want O(1) read/write 

• This is “hard attention”

Source: http://imatge-upc.github.io/telecombcn-2016-dlcv/slides/D4L6-attention.pdf

http://imatge-upc.github.io/telecombcn-2016-dlcv/slides/D4L6-attention.pdf


Learning the Structure of Deep Sparse Graphical Models 
Ryan Prescott Adams, Hanna M. Wallach, Zoubin Ghahramani, 2010



Adaptive Computation Time for Recurrent Neural Networks 
Alex Graves, 2016 















Modeling idea: graphical models on latent variables,

neural network models for observations

Composing graphical models with neural networks for structured representations 
and fast inference. Johnson, Duvenaud, Wiltschko, Datta, Adams, NIPS 2016



data space latent space



[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005. 
[2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001. 
[3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003. 
[4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000. 
[5] Jordan and Jacobs. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation 1994. 
[6] Bengio and Frasconi. An Input Output HMM Architecture. NIPS 1995. 
[7] Ghahramani and Jordan. Factorial Hidden Markov Models. Machine Learning 1997. 
[8] Bach and Jordan. A probabilistic interpretation of Canonical Correlation Analysis. Tech. Report 2005. 
[9] Archambeau and Bach. Sparse probabilistic projections. NIPS 2008. 
[10] Hoffman, Bach, Blei. Online learning for Latent Dirichlet Allocation. NIPS 2010.

[1] [2] [3] [4]

Gaussian mixture model Linear dynamical system Hidden Markov model Switching LDS

[8,9] [10]

Canonical correlations analysis admixture / LDA / NMF

[6][2][5]

Mixture of Experts Driven LDS IO-HMM Factorial HMM

[7]

Courtesy of Matthew Johnson



Probabilistic graphical models 

 + structured representations 

 + priors and uncertainty 

 + data and computational efficiency 

 – rigid assumptions may not fit 

 – feature engineering 

 – top-down inference

Deep learning 

 – neural net “goo” 

 – difficult parameterization 

 – can require lots of data 

 + flexible 

 + feature learning 

 + recognition networks



Today: Overview and intro
• Motivation and overview 

• Structure of course 

• Project ideas 

• Ungraded background quiz 

• Actual content: History, state of the field, 
REINFORCE and reparameterization trick



Structure of course
• I give first two lectures 

• Next 7 lectures mainly student presentations 

• each covers 5-10 papers on a given topic 

• will finalize and choose topics next week 

• Last 2 lectures will be project presentations



Student lectures
• 7 weeks, 84 people(!) about 10 people each week. 

• Each day will have one theme, 5-10 papers 

• Divided into 4-5 presentations of about 20 mins 
each 

• Explain main idea, scope, relate to previous work 
and future directions 

• Meet me on Friday or Monday before to organize



Grading structure
• 15% One assignment on gradient estimators 

• 15% Class presentations 

• 15% Project proposal 

• 15% Project presentation 

• 40% Project report and code



Assignment
• Q1: Show REINFORCE is unbiased.  Add different control variates/

baselines and see what happens. 

• Q2: Derive variance of REINFORCE, reparam trick, etc, and how it grows 
with the dimension of the problem. 

• Q3: Show that stochastic policies are suboptimal in some cases, optimal in 
others. 

• Q4: Pros and cons of different ways to represent discrete distributions. 

• Bonus 1: Derive optimal surrogates for REBAR, LAX, RELAX 

• Bonus 2: Derive optimal reparameterization for a Gaussian 

• Hints galore



Tentative Course Dates 

• Assignment due Feb. 1 

• Project proposal due Feb. 15 

• ~2 pages, typeset, include preliminary lit search 

• Project Presentations: March 16th and 23rd 

• Projects due: mid-April



Learning outcomes
• How to optimize and integrate in settings where we 

can’t just use backprop 

• Familiarity with the recent generative models and 
RL literature 

• Practice giving presentations, reading and writing 
papers, doing research 

• Ideally: Original research, and most of a NIPS 
submission!



Project Ideas - Easy
• Compare different gradient estimators in an RL 

setting. 

• Compare different gradient estimators in a 
variational optimization setting. 

• Write a distill article with interactive demos. 

• Write a lit review, putting different methods in the 
same framework.



Project ideas - medium
• Train GANs to produce text or graphs. 

• Train huge HMM with O(KT) cost per iteration [like van den Oord et 
al.,2017] 

• Train a model with hard attention, or different amounts of compute 
depending on input. [e.g. Graves 2016] 

• A theory paper analyzing the scalability of different estimators in 
different settings. 

• Meta-learning with discrete choices at both levels 

• Train a VAE with continuous latents but with a non-differentiable 
decoder (e.g. a renderer), or surrogate loss for text



Project ideas - hard
• Build a VAE with discrete latent variables of different size 

depending on input.  E.g. latent lists, trees, graphs. 

• Build a GAN that outputs discrete variables of variable size.  
E.g. lists, trees, graphs, programs 

• Fit a hierarchical latent variable model to a single dataset (a la 
Tenenbaum, or Grosse) 

• Propose and examine new gradient estimator / optimizer / 
MCMC alg. 

• Theory paper: Unify existing algorithms, or characterize their 
behavior



Ungraded Quiz



Next week: 
Advanced gradient estimators

• Most mathy lecture of the course 

• Should prep you and give context for for A1 

• Only calculus and probability 

• Not as scary as it looks!



Lecture 0: 
State of the field and 

basic gradient estimators



History of Generative Models
• 1940s - 1960s Motivating probability and Bayesian inference 

• 1980s - 2000s Bayesian machine learning with MCMC 

• 1990s - 2000s Graphical models with exact inference 

• 1990s - 2015 Bayesian Nonparametrics with MCMC (Indian Buffet 
process, Chinese restaurant process) 

• 1990s - 2000s Bayesian ML with mean-field variational inference 

• 1995 -1996 Helmholtz machine, wake-sleep (almost invented 
variational autoencoders) 

• 2000s - 2013 Deep undirected graphical models (RBMs, 
pretraining) 

• 2000s - 2013 Autoencoders, denoising autoencoders



Modern Generative Models
• 2000s - Probabilistic Programming 

• 2000s - Invertible density estimation 

• 2010 - Stan - Bayesian Data Analysis with HMC 

• 2013 - Variational autoencoders, reparamaterization trick 
becomes widely known 

• 2014 - Generative adversarial nets 

• 2015 - Deep reinforcement learning 

• 2016 - New gradient estimators (muprop, Q-prop, concrete + 
Gumbel-softmax, REBAR, RELAX)



Differentiable models
• Model distributions implicitly by a variable pushed 

through a deep net: 

• Approximate intractable distribution by a tractable 
distribution parameterized by a deep net: 

• Optimize all parameters using stochastic gradient 
descent

y = f✓(x)

p(y|x) = N (y|µ = f✓(x),⌃ = g✓(x))





Density estimation using Real NVP. Ding et al, 2016 



Density estimation using Real NVP. Ding et al, 2016 



Unsupervised Representation Learning with Deep Convolutional Generative 
Adversarial Networks. Alec Radford, Luke Metz, Soumith Chintala, 2015



Advantages of latent 
variable models

• Model checking by sampling 

• Natural way to specify models 

• Compact representations 

• Semi-Supervised learning 

• Understanding factors of variation in data



State of the field
• Big lesson of deep learning: 

stochastic gradient-based 
optimization scales well to 
millions of parameters 

• Easy to train supervised and 
unsupervised models this way, 
if everything is continuous 
which allows 
reparameterization. 

• Now, we’re hitting the limits of 
this modeling style



 Source: Kingma’s NIPS 2015 workshop slides



SCORE-FUNCTION ESTIMATOR 
(“REINFORCE”, WILLIAMS 1992)

• We can estimate this quantity with Monte Carlo integration:                         

• High variance: convergence to good solution challenging

@

@✓
Ep(b|✓)f(b) =

Z
@

@✓
p(b|✓)f(b)d✓

= Ep(b|✓)


f(b)

@

@✓
log p(b|✓)

�

These slides by Geoff Roeder



SCORE-FUNCTION ESTIMATOR 
(“REINFORCE”, WILLIAMS 1992)

• Log-derivative trick allows us to rewrite gradient of expectation as expectation of gradient 
(under weak regularity conditions)

• We can estimate this quantity with Monte Carlo integration:                         

• High variance: convergence to good solution challenging

@
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SCORE-FUNCTION ESTIMATOR 
(“REINFORCE”, WILLIAMS 1992)

• Log-derivative trick allows us to rewrite gradient of expectation as expectation of gradient 
(under weak regularity conditions)                    

• Yields unbiased, but high variance estimator

ĝSF = f(b)
@
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REPARAMETERIZATION TRICK

• Requires function to be known and differentiable

• Requires distribution            to be 
reparameterizable through a transformation 

• Unbiased; lower variance empirically

gREP [f(b)] =
@

@✓
f(b) =

@f

@T
@T
@✓

, b = T (✓, ✏), ✏ ⇠ p(✏)

p(b|✓)
T (✓, ✏)



CONCRETE REPARAMETERIZATION
(MADDISON ET AL. 2016)

• Works well with careful 
hyper parameter choices

• Lower variance than score-
function estimator due to 
reparameterization

• Biased estimator

• Temperature parameter

• Requires     to be known and 
differentiable

• Requires            to be 
reparamaterizable

gCON [f(b)] =
@

@✓
f(b) =

@f

@��(z)

@��(z)

@✓
, z = T (✓, ✏), ✏ ⇠ p(✏)

�

f
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REBAR 
(TUCKER ET AL. 2017)

• Improves over concrete distribution (rebar is stronger than concrete)

• Uses continuous relaxation of discrete random variables (concrete) 
to build unbiased, lower-variance gradient estimator

• Using the reparameterization from the Concrete distribution, 
construct a control variate for the score-function estimator

• Show how tune additional parameters of the estimator (e.g., 
temperature   ) online�



Digression: control variates for Monte Carlo estimators



CONTROL VARIATES: 
DIGRESSION

• New estimator is equal in expectation to old estimator (bias is 
unchanged)

• Variance is reduced when |corr(c, g)| > 0

• We exploit the difference between the function c and its known 
mean during optimization to “correct” the value of the estimator 

ĝnew(b) = ĝ(b)� ⌘
�
c(b)� Ep(b)[c(b)]

�

⌘? = �Cov[ĝ, c]

Var[ĝ]



CONTROL VARIATES:
FREE-FORM

• If we choose a neural network as our parameterized differentiable 
function, then the above formulation can be simplified to the above

• The scaling constant will be absorbed into the weights of the 
network, and optimality is determined by training 

• How should we update the weights of the free-form control variate?

ĝnew(b) = ĝ(b)� c�(b) + Ep(b) [c�(b)]



High-dimensional Bayesopt?

• Bayesian optimization 
doesn’t really work in 50 
dimensions 

• BNN instead of GP?


