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Where do we see this guy?

L(0) = Eplo)Lf(b),

e Just about everywhere!

e \ariational Inference
* Reinforcement Learning
e Hard Attention

* And so many more!



Gradient based optimization

e Gradient based optimization
Is the standard method used
today to optimize
expectations

e Necessary if models are
neural-net based

e Very rarely can this gradient
be computed analytically



Otherwise, we estimate...

e A number of approaches exist to estimate this gradient

* They make varying levels of assumptions about the
distribution and function being optimized

e Most popular methods either make strong assumptions or
suffer from high variance



REINFORCE (Williams, 1992)

grEINFORCELS] = f (b) 25 log p(b]6), b ~ p(b]0)

e Unbiased

* Has few requirements e Suffers from high variance

e Easy to compute



Reparameterization
(Kingma & Welling, 2014)

N 0
Jreparam [f] — 3}]; gg — T(@, 6)7 €~ p(E)

* Makes stronger assumptions

* Lower variance empirically e Requires f(b) is known and
differentiable

e Unbiased
e Requires p(l9) is
reparameterizable



Concrete
(Maddison et al., 2016)

N oo (z
gconcrete[f] — ag?g/t) ég/t) <= T(@, 6)7 €~ p(é)

Biased

 Works well in practice

Adds temperature hyper-parameter

Requires that f(b) is known, and differentiable

e Low variance from
reparameterization

Requires p(z|0) is reparameterizable

Requires f(b) behaves predictably outside of domain



Control Variates

e Allow us to reduce variance of a Monte Carlo estimator

Gnew (D) = g(b) — () 4 Ep(p) |c(b),

e Variance is reduced if corr(g,c) > 0

* Does not change bias



Putting it all together

e We would like a general gradient estimator that is
* unbiased
e |ow variance
e usable when f(b) Is unknown

e useable when p(b|6) is discrete
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Our Approach

§LAX — gREINFORGE[f ] — QREINFORCE[Cqb] + Greparam [C(b]
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Our Approach

§LAX — gREINFORCE[f] — gREINFORCE[Cgb] + Jreparam [C¢]

= [f(b) — c4()] g5 logp(b]0) + F5c4(b)

e Start with the reinforce estimator for f(b)
e We introduce a new function c¢(b)

e We subtract the reinforce estimator of its gradient and add the
reparameterization estimator

e Can be thought of as using the reinforce estimator of c4(b) as a control
variate




Optimizing the Control Variate

%Variance(@) =K £§2

p.

* For any unbiased estimator we can get Monte Carlo
estimates for the gradient of the variance of ¢

e Use to optimize ¢y






Extension to discrete p(b|6)

greLAx = [f(b) — cp(2)] 55 logp(b]0) + S5ce(2) — S5cs(Z)
b = H(Z),Z ™~ P(Z|9)75 ™~ p(2|b, 6))

e When b is discrete, we introduce a relaxed distribution p(z|0)
and a function 2 where H(z) = b ~ p(b|0)

* We use the conditioning scheme introduced in REBAR
(Tucker et al. 2017)

* Unbiased for all ¢4




A Simple Example

(16 [(t — )]

Used to validate REBAR (used t = .45)

We use t = .499
REBAR, REINFORCE fail due to noise outweighing signal

Can RELAX improve?
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e RELAX outperforms baselines
 Considerably reduced variance!

* RELAX learns reasonable surrogate



Analyzing the Surrogate

e REBAR’s fixed
surrogate cannot
produce consistent
and correct gradients

e RELAX learns to
balance REINFORCE
variance and
reparameterization
variance
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A More Interesting Application

logp(x) > L(0) = Eyp|2) [log p(z|b) + log p(b) — log q(b|x)]

e Discrete VAE
e [ atent state is 200 Bernoulli variables

e Discrete sampling makes reparameterization estimator
unusable

cy(2) = floa(z)) +7,(2)




Results
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Reinforcement Learning

e Policy gradient methods are very popular today (A2C,
A3C, ACKTR)

e Seeks to find argmaxQETNw(ﬂ@) R(T)]
* Does this by estimating %ETNW(TW) R(7)]

e R is not known so many popular estimators cannot be
used



Actor Critic

T A ]

R 0log m(at|s¢, 0
gAC:Z & (f(%,t‘ ) Z"“t'—cqb(st)

t=1 |t/ =t

* Cy is an estimate of the value function

* This is exactly the REINFORCE estimator using an
estimate of the value function as a control variate

 Why not use action in control variate?

* Dependence on action would add bias




LAX for RL

T A ]

R 0log w(at|se¢, 0
gLAX:Z 5 éetl : ) ZTt/— +

t=1 t’'=t

e Allows for action dependence in control variate
e Remains unbiased

e Similar extension available for discrete action spaces




Results
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* |Improved performance

* | ower variance gradient estimates



Future Work

What does the optimal surrogate look like?
Many possible variations of LAX and RELAX

Which provides the best tradeoff between variance, ease of implementation, scope
of application, performance

RL

e |Incorporate other variance reduction techniques (GAE, reward
bootstrapping, trust-region)

e Ways to train the surrogate off-policy
Applications
e |nference of graph structure (coming soon)

* |nference of discrete neural network architecture components (coming soon)



Directions

e Surrogate can take any form

e can rely on global information even if forward pass only
uses local info

e Can depend on order even if forward pass is invariant

» Reparameterization can take many forms, ongoing work
on reparameterizing through rejection sampling, or
distributions on permutations



(a) Gumbel-softmax (b) Stick-breaking (c) Stick-breaking (d) Rounding
(categorical) (permutations) (permutations)

Reparameterizing the Birkhoff Polytope for
Variational Permutation Inference




Learning Latent Permutations with Gumbel-Sinkhorn
Networks




Why are we optimizing
policies anyways?

 Next week: Variational optimization



