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Where do we see this guy?

• Just about everywhere!


• Variational Inference


• Reinforcement Learning


• Hard Attention


• And so many more!

L(✓) = Ep(b|✓)[f(b)]



Gradient based optimization

• Gradient based optimization 
is the standard method used 
today to optimize 
expectations


• Necessary if models are 
neural-net based


• Very rarely can this gradient 
be computed analytically



Otherwise, we estimate…

• A number of approaches exist to estimate this gradient


• They make varying levels of assumptions about the 
distribution and function being optimized


• Most popular methods either make strong assumptions or 
suffer from high variance



REINFORCE (Williams, 1992)

• Unbiased


• Has few requirements


• Easy to compute

• Suffers from high variance


ĝREINFORCE[f ] = f (b) @
@✓ log p(b|✓), b ⇠ p(b|✓)



Reparameterization 
(Kingma & Welling, 2014)

• Lower variance empirically


• Unbiased

• Makes stronger assumptions


• Requires       is known and 
differentiable


• Requires          is 
reparameterizable

ĝreparam[f ] =
@f
@b

@b
@✓ b = T (✓, ✏), ✏ ⇠ p(✏)

f(b)

p(b|✓)



Concrete 
(Maddison et al., 2016) 

• Works well in practice


• Low variance from 
reparameterization

• Biased


• Adds temperature hyper-parameter


• Requires that        is known, and differentiable


• Requires          is reparameterizable


• Requires        behaves predictably outside of domain

ĝ
concrete

[f ] = @f
@�(z/t)

@�(z/t)
@✓ z = T (✓, ✏), ✏ ⇠ p(✏)

p(z|✓)

f(b)

f(b)



Control Variates
• Allow us to reduce variance of a Monte Carlo estimator

• Variance is reduced if 


• Does not change bias

ĝnew(b) = ĝ(b)� c(b) + Ep(b)[c(b)]

corr(g, c) > 0



Putting it all together

• We would like a general gradient estimator that is


• unbiased


• low variance


• usable when      is unknown


• useable when           is discrete

f(b)

p(b|✓)
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Our Approach
ĝLAX = gREINFORCE[f ]� gREINFORCE[c�] + greparam[c�]



Our Approach

• Start with the reinforce estimator for 


• We introduce a new function


• We subtract the reinforce estimator of its gradient and add the 
reparameterization estimator


• Can be thought of as using the reinforce estimator of          as a control 
variate

f(b)

c�(b)

c�(b)

ĝLAX = gREINFORCE[f ]� gREINFORCE[c�] + greparam[c�]

= [f(b)� c�(b)]
@
@✓ log p(b|✓) +

@
@✓ c�(b) b = T (✓, ✏), ✏ ⇠ p(✏)



Optimizing the Control Variate

• For any unbiased estimator we can get Monte Carlo 
estimates for the gradient of the variance of 


• Use to optimize 

ĝ

c�

@

@�
Variance(ĝ) = E


@

@�
ĝ2
�



What about discrete 
b?



Extension to discrete  

• When b is discrete, we introduce a relaxed distribution       
and a function     where 


• We use the conditioning scheme introduced in REBAR 
(Tucker et al. 2017)


• Unbiased for all 

ĝRELAX = [f(b)� c�(z̃)]
@
@✓ log p(b|✓) +

@
@✓ c�(z)�

@
@✓ c�(z̃)

b = H(z), z ⇠ p(z|✓), z̃ ⇠ p(z|b, ✓)

p(b|✓)

p(z|✓)

c�

H(z) = b ⇠ p(b|✓)H(z) = b ⇠ p(b|✓)



A Simple Example

• Used to validate REBAR (used t = .45)


• We use t = .499


• REBAR, REINFORCE fail due to noise outweighing signal


• Can RELAX improve?

Ep(b|✓)[(t� b)2]



• RELAX outperforms baselines


• Considerably reduced variance!


• RELAX learns reasonable surrogate



Analyzing the Surrogate

• REBAR’s fixed 
surrogate cannot 
produce consistent 
and correct gradients


• RELAX learns to 
balance REINFORCE 
variance and 
reparameterization 
variance



A More Interesting Application

• Discrete VAE 


• Latent state is 200 Bernoulli variables


• Discrete sampling makes reparameterization estimator 
unusable

log p(x) � L(✓) = E
q(b|x)[log p(x|b) + log p(b)� log q(b|x)]

c�(z) = f(��(z)) + r⇢(z)



Results



Reinforcement Learning

• Policy gradient methods are very popular today (A2C, 
A3C, ACKTR)


• Seeks to find


• Does this by estimating 


• R is not known so many popular estimators cannot be 
used

argmax✓E⌧⇠⇡(⌧ |✓)[R(⌧)]

@
@✓E⌧⇠⇡(⌧ |✓)[R(⌧)]



Actor Critic

•      is an estimate of the value function 


• This is exactly the REINFORCE estimator using an 
estimate of the value function as a control variate


• Why not use action in control variate?


• Dependence on action would add bias

c�

ĝAC =

TX

t=1

@ log ⇡(at|st, ✓)
@✓

"
TX

t0=t

rt0 � c�(st)

#



LAX for RL

• Allows for action dependence in control variate


• Remains unbiased


• Similar extension available for discrete action spaces

ĝLAX =

TX

t=1

@ log ⇡(at|st, ✓)
@✓

"
TX

t0=t

rt0 � c�(st, at)

#
+

@

@✓
c�(st, at)c�(st, at)ĝLAX =

TX

t=1

@ log ⇡(at|st, ✓)
@✓

"
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#
+

@

@✓
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@

@✓
c�(st, at)



Results

• Improved performance


• Lower variance gradient estimates 



Future Work
• What does the optimal surrogate look like?


• Many possible variations of LAX and RELAX


• Which provides the best tradeoff between variance, ease of implementation, scope 
of application, performance


• RL


• Incorporate other variance reduction techniques (GAE, reward 
bootstrapping, trust-region)


• Ways to train the surrogate off-policy


• Applications


• Inference of graph structure (coming soon)


• Inference of discrete neural network architecture components (coming soon)



Directions

• Surrogate can take any form


• can rely on global information even if forward pass only 
uses local info


• Can depend on order even if forward pass is invariant


• Reparameterization can take many forms, ongoing work 
on reparameterizing through rejection sampling, or 
distributions on permutations



Reparameterizing the Birkhoff Polytope for

Variational Permutation Inference



Learning Latent Permutations with Gumbel-Sinkhorn 
Networks



Why are we optimizing 
policies anyways?

• Next week: Variational optimization


