Program Synthesis for Character Level Language Modelling

Pavol Bielik Veselin Raychev Martin Vechev

Department of Computer Science, ETH Zurich, Switzerland

CSC2547, Winter 2018

1 / 11

Pavol Bielik, Veselin Raychev, Martin Vechev Program Synthesis for Character Level Langu CSC2547, Winter 2018

- Neural networks are not as effective on structured tasks (e.g., program synthesis).
- Neural network weights are difficult to interpret.
- It is difficult to define sub-models for different circumstances.

- TChar is a domain-specific language (DSL) for writing programs that define probabilistic n-gram models and variants.
- Variants include models trained on subsets of data, queried only when certain conditions are met, used to make certain classes of predictions, etc.
- Submodels can be composed into a larger model using if-then statements.

• Let f be a function (program) from TChar that takes a prediction position t in a text x and returns a context to predict with. Say

x = Dogs are th_{-t}

- For example, say $f(t, x) = x_s$ if x_{t-1} is whitespace else $x_{t-2}x_{t-1}$, where x_s is the first character of the previous word.
- Then predict x_t using distribution $P(x_t|f(t,x))$.

• Let f be a function (program) from TChar that takes a prediction position t in a text x and returns a context to predict with. Say

 $x = \text{Dogs are th}_{-t}$

- For example, say $f(t, x) = x_s$ if x_{t-1} is whitespace else $x_{t-2}x_{t-1}$, where x_s is the first character of the previous word.
- Then predict x_t using distribution $P(x_t|f(t,x))$.
- This is just a trigram language model with special behavior for starting characters!

• SimpleProgram: Use Move and Write instructions to condition the prediction (1), update the program state (2), or determine which branch to choose (3). (e.g., LEFT WRITE_CHAR LEFT WRITE_CHAR provides context for trigram language model).

- SimpleProgram: Use Move and Write instructions to condition the prediction (1), update the program state (2), or determine which branch to choose (3). (e.g., LEFT WRITE_CHAR LEFT WRITE_CHAR provides context for trigram language model).
- SwitchProgram: Use switch statements to conditionally select appropriate subprograms (e.g., use **switch** LEFT WRITE_CHAR) to separately handle newline, tabs, special characters, and upper-case characters.)

- SimpleProgram: Use Move and Write instructions to condition the prediction (1), update the program state (2), or determine which branch to choose (3). (e.g., LEFT WRITE_CHAR LEFT WRITE_CHAR provides context for trigram language model).
- SwitchProgram: Use switch statements to conditionally select appropriate subprograms (e.g., use **switch** LEFT WRITE_CHAR) to separately handle newline, tabs, special characters, and upper-case characters.)
- StateProgram: Update the current state and determine which program to execute next based on current state (e.g., use LEFT WRITE_CHAR LEFT WRITE_CHAR that updates state on */ to handle comments separately).

 Given a validation set D and regularization penalty Ω, the learning process is to find a program p^{*} ∈ TChar:

$$p^* = rgmin_p \left[-\log P(p|D) + \lambda \cdot \Omega(p)
ight]$$

- TChar consists of branches and SimplePrograms.
- Branches are synthesized use the ID3+ algorithm.
- SimplePrograms are synthesized with a combination of brute-force (for programs up to 5 instructions), genetic programming and MCMC methods.

- Linux Kernel and Hutter Prize Wikipedia datasets are used for evaluation. Metrics used are bits-per-character (entropy of p(xt|x<t) and error rate (number of mistakes)).
- TChar model is compared to various n-gram models (4-, 7-, 10-, and 15-gram) and LSTMs of various sizes.

Experiments

Linux Kernel Dataset (Karpathy et al., 2015)									
Model	Bits per Character	Error Rate	Training Time	Queries per Second	Model Size				
LSTM (Layers×Hidden Siz	e)								
2×128	2.31	40.1%	≈ 28 hours	4 000	5 MB				
2×256	2.15	37.9%	\approx 49 hours	1 100	15 MB				
2×512	2.05	38.1%	≈ 80 hours	300	53 MB				
n-gram									
4-gram	2.49	47.4%	1 sec	46 000	2 MB				
7-gram	2.23	37.7%	4 sec	41 000	24 ME				
10-gram	2.32	36.2%	11 sec	32 000	89 ME				
15-gram	2.42	35.9%	23 sec	21 500	283 ME				
DSL model (This Work)									
TChar _{w/o cache & backoff}	1.92	33.3%	≈ 8 hours	62 000	17 ME				
TChar _{w/o backoff}	1.84	31.4%	≈ 8 hours	28 000	19 ME				
TChar _{w/o cache}	1.75	28.0%	≈ 8.2 hours	24 000	43 ME				
TChar	1.53	23.5%	≈ 8.2 hours	3 000	45 ME				

• For *Linux Kernel*, TChar model reduces error rate of best baseline (15–gram model) by 35%, reduces BPC by 25%, and is several times faster to train and query than an LSTM!

Hutter Prize Wikipedia Dataset (Hutter, 2012)										
Metric	<i>n</i> -gram	DSL model	Stacked LSTM	MRNN	MI-LSTM	HM-LSTM [†]				
	n = 7	This Work	Graves (2013)	Sutskever et al. (2011)	Wu et al. (2016)	Chung et al. (2017)				
BPC	1.94	1.62	1.67	1.60	1.44	1.34				

• TChar model is not as good on unstructured data: on *Wikipedia*, its error rate is roughly the same as for the Linux Kernel dataset, but it is outperformed here by LSTMs.

- + Program *f* drawn from TChar can be read by humans; much more interpretable than weights of a neural network.
- + Calculating $P(x_t|f(t,x))$ is efficient: use a hashtable to look up how frequently x appears in the context of f(t,x).
- + TChar model outperforms LSTMs and n-gram models on structured data.

- TChar model is outperformed by LSTMs on unstructured data.
- TChar has limited expressiveness, unlike DNNs.
- However, increasing the expressiveness of TChar can in theory make the synthesis problem intractable or even undecidable.