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NTMS (1): QUICK OVERVIEW

NTMs: a fully differentiable computer!

Trqining input = progrqm input Inout
Training output = desired program output o
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Soft attention during reads/wrl’res over the NTM memory cells

NTM is built from fully differentiable computations; ~/

learnable via backprop:

As we train over
many input/output
pairs...

Simple memory copy task:

Learning to read/write sequentially



NTMS (2): LEARNING TO
ADDRESS MEMORY

Soft attention during reads/writes over the NTM memory cells

NTM is built from fully differentiable computations; Q/ learnable via backprop:
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NTMS (2): LEARNING TO
ADDRESS MEMORY

Each timestep /clock-cycle, the NTM must read/write all of memory!x

KEY PROJECT IDEA:
Allow NTM to read /write only a single memory cell at each timestep /clock-cycle

'U)t l\It Just like a real computer!
Read weight vector NTM memory Scales better
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RELATED

D-NTM / dynamic-NTM: (Gulcehre et al., 2017):

Instead of a weighted combination of memory cells, w; = [0.1,0.8,0.1]
sample which memory cell to read/write i ~ Categorical(w;)

Ty < Mt [Z]

Limitations:

Sampling makes D-NTM not fully differentiable;
Work-around: they use REINFORCE to train D-NTM.

+ many tweaks to combat this high variance gradient estimator

Other work: TARDIS (Gulcehre et al.,, 2017), RL-NTM (Zaremba & Sutskever, 2015)




DISCRETIZING NEURAL
FHRING MACHINES
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DISCRETIZING NEURAL

TURING MACHINES
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Gradient estimators to try:
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PROGRESS

¢ Successfully reproduced prior work:
(1) NTM: copy task performance

(2) Gradient estimators: applying REINFORCE/RELAX /REBAR to a toy Bernoulli(0) problem
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Figure 2a) Memory copy task

Training convergence:

Memory copy task
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RT
Task 15: Basic Deduction

Sheep are afraid of wolves.
Cats are afraid of dogs.
Mice are afraid of cats.

Figure 2b) bAbl question/anti¥aliask. ...

Training convergence:

bAbl question/answer task
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