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Abstract

Variational inference using the reparameteri-
zation trick has enabled large-scale approx-
imate Bayesian inference in complex pro-
babilistic models, leveraging stochastic op-
timization to sidestep intractable expecta-
tions. The reparameterization trick is appli-
cable when we can simulate a random vari-
able by applying a differentiable determinis-
tic function on an auxiliary random variable
whose distribution is fixed. For many dis-
tributions of interest (such as the gamma or
Dirichlet), simulation of random variables re-
lies on acceptance-rejection sampling. The
discontinuity introduced by the accept-reject
step means that standard reparameterization
tricks are not applicable. We propose a new
method that lets us leverage reparameteriza-
tion gradients even when variables are out-
puts of a acceptance-rejection sampling algo-
rithm. Qur approach enables reparameteri-
zation on a larger class of variational distribu-

2014) and text [Hoffman et al., 2013]. By definition,
the success of variational approaches depends on our
ability to (i) formulate a flexible parametric family
of distributions; and (ii) optimize the parameters to
find the member of this family that most closely ap-
proximates the true posterior. These two criteria are
at odds—the more flexible the family, the more chal-
lenging the optimization problem. In this paper, we
present a novel method that enables more efficient op-
timization for a large class of variational distributions,
namely, for distributions that we can efficiently sim-
ulate by acceptance-rejection sampling, or rejection
sampling for short.

For complex models, the variational parameters can
be optimized by stochastic gradient ascent on the evi-
dence lower bound (ELBO), a lower bound on the
marginal likelihood of the data. There are two pri-
mary means of estimating the gradient of the ELBO:
the score function estimator [Paisley et al., 2012, Ran-
ganath et al., 2014, Mnih and Gregor, 2014] and the
reparameterization trick [Kingma and Welling, 2014,
Rezende et al., 2014, Price, 1958, Bonnet, 1964], both
of which rely on Monte Carlo sampling. While the



Variational Inference

* Interested in computing posterior p(z|z), but it is
often intractable

» parametrize a variational family of distributions ¢(z; 6)
to approximate true posterior

 Maximize Evidence Lower Bound (ELBO):

L(0) = Ey(z9) [f(2)] + Hlg(z;0)],
i Z) = logp(x,z),
Hg(z;0)] := Eq(z;0)[— log q(2; 0)].




Rejection Sampling

» Want to sample from ¢(z; 0), parametrize a
proposal distribution r(z; 0) s.t. q(z;0) < M - r(z;0)

q(2;0)

* Accept sample z ~ r(z; #) with probability M -r(o:0)

source: https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/lectures/lecture17.pdf
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Reparameterized Rejection Sampler

 Problem: what if we want our variational family ¢(z; 6)
to follow a distribution that requires rejection
sampling to approximate”?

* Rejection sampling causes discontinuities



Example: Gamma Distribution
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 To sample from Gamma(#, 3), sample from Gamma(#, 1)
and divide by (3, the acceptance probability is
dependent on @


http://www.epixanalytics.com/

Reparameterized Rejection Sampler

1. Reparameterize z: z = h(e,0),e ~ s(¢)

2. Find marginal distribution of accepted sample &:

m(e;0) —/ e,u;0)du
' q(h(e,0);0)
/M s(e)1 _O<u< M- (h(z.0):0) du
_ (e q (h(e,0);0)




Reparameterized Rejection Sampler

3. Rewrite ELBO:

VQ ﬂq(z;O)[f(z)]
= VoEr(c.0)[f(Rh(e,0))]

— {‘71‘(6;0) [ng(h(ﬁ, 9))] +

L (e30)




Related Work

 Automatic Differentiation Variational Inference (apwi
- fit z with Gaussian posterior; cannot learn a
Gamma or Dirichlet posterior

e Black-Box Variational Inference B

- sample from ¢( z; @) to approximate gradient

* (Generalized Reparameterization Gradient (G-REP)

- find a distribution s(¢) that makes € dependent on

choice of variational family



Results

* model = sparse gamma Deep Exponential Family
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source: https://arxiv.org/pdf/1610.05683.pdf
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Future Work

 Combining Rejection Sampling Variational
Inference with Metropolis-Hastings

* Metropolis-Hastings: Acquire a sequence of
samples from a distribution that is difficult to
sample from directly; use rejection sampling




Supplementary: Gradient Derivation




