SMASH: One-Shot Model Architecture
Search Through HyperNetworks

Authors: Andrew Brock, Theodore Lim, J.M. Ritchie, and Nick Weston
April 14, 2018

Presentation by Kamal Rai

The Motivation

When training neural networks, we:

e Fix the network architecture

e Specify a loss function £

e Find optimal weights W using backprop to minimize j—‘fv

Iterate over design decisions until we obtain a good model
Model hyperparameters: Depth, width, connectivity

The Motivation

Finding optimal architectures requires extensive experimentation
Current automated architecture selection methods are expensive
Evolutionary techiniques and reinforcement learning

Given randomly sampled hyperparameters ¢, we can iteratively:

1. Optimize the weights of an auxilary network using %%

2. Optimize the weights of the main network

The HyperNetwork

<0

Figure 1: Generate weights using an auxilary network

The Tra g Algorithm

Algorithm 1: SMASH
Input: Space of all candidate architectures R,
Initialize HyperNet weights H
loop
Sample input minibatch x;, random architecture ¢, and
architecture weights W(c)
Get training error E, = (W, x;) = f(H(c), x;), backprop 4
through the HyperNet and then update H
end loop
loop
Sample a random architecture c and evaluate error on
validation set E, = f.(H(c), xy)
end loop

Fix architecture and train normally with freely-varying weights W

Sampling Weights

Figure 2: Sampling from a hypernetwork

Ranking Candidate Models

30 * 4
-
—_ * -
N -7 X
~ 29t .]
S * **//
w L~
c
S * *
= 28 —]
g ** % *
© * i
> * -
o o7} -]
3 27 * a!k// ** *
= s *
i
26 * 4
*
25 * L L L L
30 40 50 60 70 80 90

QMASQH \/alidati Errar (9L)

Figure 3: Exploring performance on CIFAR-100

The strength of correlation depends on

e The capacity of the hypernet

e The ratio of hypernet generated weights to freely learned
weights

The Memory Model

@ - <~/
~ ~ /
N \ \/

OO0 OO

Figure 4: Layers are ops that read and write to memory

An Experiment

Table 1: Error rates (%) on CIFAR-10 and CIFAR-100 with standard data augmentation (+).

Method Depth Params C10+ C100+
FractalNet [20] 21 38.6M 522 23.30
with Dropout/Drop-path 21 38.6M 4.60 23.73
Wide ResNet [43] 16 11.0M 4.81 22.07
28 36.5M 4.17 20.50
DenseNet-BC (k = 24) [15] 250 15.3M 3.62 17.60
DenseNet-BC (k = 40) 190 25.6M 3.46 17.18
Shake-Shake [11] 26 26.2M 2.86 15.85
Neural Architecture Search w/ RL[44] 39 32.0M 3.84 -
MetaQNN [3] 9 11.18M 6.92 27.14
Large-Scale Evolution [26] - 54M 5.40 -
- 404 M - 23.7
CGP-CNN [38] - 1.68M 5.98 -
SMASHv1 116 4.6M 5.53 22,07
SMASHv2 211 16M 4.03 20.60

Figure 5: Benchmark results

The space of candidate architectures must be pre-specified

Does not address regularization or learning rate

Not jointly training the hypernet and the main network

Not using gradients to optimize the choice of main network

10

Conclusion

Can efficiently explore architectures using Hypernet weights

Two Related Works

e Hyperparameter Optimization with Hypernets. J. Lorraine and
D. Duvenaud

e Hyper-bandit: Bandit-based Configuration Evaluation for
Hyperparameter Optimization. L. Li, K. Jamieson, and G.
DeSalvo

11

