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The Motivation

When training neural networks, we:

e Fix the network architecture

e Specify a loss function £

e Find optimal weights W using backprop to minimize j—‘fv

Iterate over design decisions until we obtain a good model
Model hyperparameters: Depth, width, connectivity



The Motivation

Finding optimal architectures requires extensive experimentation
Current automated architecture selection methods are expensive
Evolutionary techiniques and reinforcement learning

Given randomly sampled hyperparameters ¢, we can iteratively:

1. Optimize the weights of an auxilary network using %%

2. Optimize the weights of the main network



The HyperNetwork
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Figure 1: Generate weights using an auxilary network



The Tra g Algorithm

Algorithm 1: SMASH
Input: Space of all candidate architectures R,
Initialize HyperNet weights H
loop
Sample input minibatch x;, random architecture ¢, and
architecture weights W(c)
Get training error E, = (W, x;) = f(H(c), x;), backprop 4
through the HyperNet and then update H
end loop
loop
Sample a random architecture c and evaluate error on
validation set E, = f.(H(c), xy)
end loop

Fix architecture and train normally with freely-varying weights W



Sampling Weights

Figure 2: Sampling from a hypernetwork



Ranking Candidate Models

30 * 4
-
—_ * -
N -7 X
~ 29t . ]
S * **//
w L~
c
S * *
= 28 — ]
g ** % *
© * i
> * -
o o7} - ]
3 27 * a!k// ** *
= s *
i
26 * 4
*
25 * L L L L
30 40 50 60 70 80 90

QMASQH \/alidati Errar (9L)

Figure 3: Exploring performance on CIFAR-100



The strength of correlation depends on

e The capacity of the hypernet

e The ratio of hypernet generated weights to freely learned
weights



The Memory Model
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Figure 4: Layers are ops that read and write to memory




An Experiment

Table 1: Error rates (%) on CIFAR-10 and CIFAR-100 with standard data augmentation (+).

Method Depth Params C10+ C100+
FractalNet [20] 21 38.6M 522 23.30
with Dropout/Drop-path 21 38.6M 4.60 23.73
Wide ResNet [43] 16 11.0M 4.81 22.07
28 36.5M 4.17 20.50
DenseNet-BC (k = 24) [15] 250 15.3M 3.62 17.60
DenseNet-BC (k = 40) 190 25.6M 3.46 17.18
Shake-Shake [11] 26 26.2M 2.86 15.85
Neural Architecture Search w/ RL[44] 39 32.0M 3.84 -
MetaQNN [3] 9 11.18M 6.92 27.14
Large-Scale Evolution [26] - 54M 5.40 -
- 404 M - 23.7
CGP-CNN [38] - 1.68M 5.98 -
SMASHv1 116 4.6M 5.53 22,07
SMASHv2 211 16M 4.03 20.60

Figure 5: Benchmark results



The space of candidate architectures must be pre-specified

Does not address regularization or learning rate

Not jointly training the hypernet and the main network

Not using gradients to optimize the choice of main network
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Conclusion

Can efficiently explore architectures using Hypernet weights

Two Related Works

e Hyperparameter Optimization with Hypernets. J. Lorraine and
D. Duvenaud

e Hyper-bandit: Bandit-based Configuration Evaluation for
Hyperparameter Optimization. L. Li, K. Jamieson, and G.
DeSalvo
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