Bayesian Nonparametrics A brief introduction

Will Grathwohl Xuechen Li Eleni Triantafillou

March 2, 2018

Will Grathwohl, Xuechen Li, Eleni Triantafillo

Bayesian Nonparametrics

Applications

- Gaussian Processes
- Dirichlet Processes
- Indian Buffet Processes

1 What is BNP? Why BNP?

2 Applications

- Gaussian Processes
- Dirichlet Processes
- Indian Buffet Processes

- In general, given some data X, we can assume that: data = underlying pattern + noise
- Can interpret $P(X|\theta)$ as P(data|pattern)
- The problem of statistical inference then is to figure out the underlying pattern
- Think of a model M as a set of probability measures on X according to some parameters θ. M = {P_θ|θ ∈ T} where T is the space in which θ takes values in.
- M is **parametric** if T has finite dimension, and **nonparametric** otherwise.

Example: Parametric vs Nonparametric Density Estimation

- Before discussing **Bayesian** nonparametrics, lets consider a simple example of a nonparametric model and compare it to a parametric alternative
- Assume we are given some observed data, shown below and want to perform density estimation

FIGURE 1.1. Density estimation with Gaussians: Maximum likelihood estimation (left) and kernel density estimation (right).

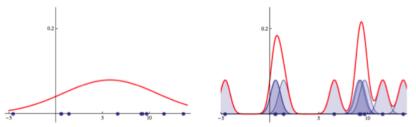


Figure from Lecture Notes on Bayesian Nonparametrics, Peter Orbanz

In the figure:

- Left: Fit 1 Gaussian to the data. In this case θ consists of a mean and standard deviation (regardless of the number of data points).
- Right: Kernel density estimation. Add a new Gaussian g for each data point x_i , centered at x_i . The density estimate is then $p(x) = \frac{1}{n} \sum_{i=1}^{n} g(x|x_i, \sigma)$
- The Gaussian model is parametric, with 2 degrees of freedom, while the Kernel density estimator is non-parametric, with the number of parameters growing as more data points are observed

Choosing the parameter space?

- How to decide on a parameter space to model data?
- For example, in the left figure below, a reasonable choice for the parameter is a line, so the parameter space $\mathbf{T} \in \mathcal{R}^2$ (slope and offset)
- If the data instead looks nonlinear like in the right subfigure, what is a reasonable parameter space? All possible (differentiable?) nonlinear functions?

FIGURE 1.2. Regression problems: Linear (left) and nonlinear (right). In either case, we regard the regression function (plotted in blue) as the model parameter.

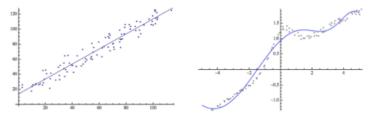


 Figure from Lecture Notes on Bayesian Nonparametrics;
 Peter Orbanz = > =
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >

- Bayesians treat uncertainty as randomness
- We do not know the parameter underlying the data treat it as a random variable Θ taking values from T.
- Make a modeling assumption, that $\Theta \sim Q$ for some distribution Q, referred to as the 'prior'.
- A Bayesian model consists of the prior *Q* and the observational model *M* as above
- Data is generated as $\Theta \sim Q$, $X1, X2, \ldots | \Theta \sim_{\it iid} P_{\Theta}$
- We are then interested in the posterior $Q(\Theta|X_1 = x_1, \dots, X_n = x_n)$
- Nonparametric Bayesian Model: infinite parameter space T. Therefore requires infinite-dimensional distributions for Q and M.

1 What is BNP? Why BNP?

Applications

- Gaussian Processes
- Dirichlet Processes
- Indian Buffet Processes

- Let T be a space of functions from S to ℝ where S ⊂ ℝ^d (e.g. given d-dimensional points, predict a real-valued target for each one)
- Let Θ be a random element of **T**. Then it is a random function.
- Let $s \in S$ be a (d-dimensional) point
- Then $\Theta(s)$ is a random variable in \mathbb{R} .
- Fixing n points then gives a random vector in ℝⁿ: (Θ(s₁), Θ(s₂),...,Θ(s_n))
- Consider the quantity $\mu_{s_1,...,s_n} = (\Theta(s_1), \Theta(s_2), \ldots, \Theta(s_n))$
- The distributions defined by μ are called 'finite-dimensional marginals' of μ

- μ is called a **Gaussian Process (GP)** on **T** if for any finite set $S_n = \{s_1, \ldots, s_n\}$, μ_{S_n} is an n-dimensional Gaussian.
- Define $m(s) = \mathbb{E}[\Theta(s)]$ and $k(s_1, s_2) = Cov[\Theta(s_1), \Theta(s_2)]$
- So, if μ is a GP, then each finite-dimensional marginal $\mu_{S_n} \sim \mathcal{N}(m(S_n), k(S_n))$ where

$$m(S_n) = \begin{bmatrix} m(s_1) \\ \dots \\ m(s_n) \end{bmatrix} \text{ and } k(S_n) = \begin{bmatrix} k(s_1, s_1) & \dots & k(s_1, s_n) \\ \dots & \dots & \dots \\ k(s_1, s_n) & \dots & k(s_1, s_n) \end{bmatrix}$$

- Assume we observe \$\mathcal{D} = {(\$x_i, y_i\$)}_{i=1}^N = (\$X, y\$) where \$x_i\$'s are observations in \$\mathbb{R}^d\$ and \$y_i\$'s are targets in \$\mathbb{R}\$.
- The regression problem: find a function θ mapping observations to targets.
- One approach is to treat this function as a random variable Θ and infer a distribution over functions given data p(Θ|X, y)
- Since Θ is a random function, we can place a GP prior over it: $\Theta \sim GP(0, K)$.
- We can view the responses as random variables too: $Y_i = \Theta(x_i) + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ is some random independent noise

Gaussian Process Regression

- We are then looking for the posterior $p(\Theta|Y_1, \ldots, Y_N)$
- We can compute its finite dimensional marginals
 p(Θ(X_{1*}),...,Θ(X_{N*})|Y₁,...,Y_N) where {(X_{i*},Y_{i*})}^N_{i=1} denotes
 new data
- What is the distribution of the variables that we are conditioning on? Recall that each Y_i is the sum of 2 Gaussians.
- For convenience denote $Y_* = \{\Theta(X_{1*}), \dots, \Theta(X_{N*}\}$ and $Y = \{Y_1, \dots, Y_N\}$
- Let K be the covariance of the variables in Y

$$\mathcal{K} = \begin{bmatrix} k(x_1, x_1) + \sigma^2 & \dots & k(x_1, x_n) \\ \dots & & \dots \\ k(x_n, x_1) & \dots & k(x_n, x_n) + \sigma^2 \end{bmatrix}$$

• Also let $K_* = k(Y_*, Y)$, and $K_{**} = k(Y_*, Y_*)$

Gaussian Process Regression

• The covariance of the joint $(\Theta(X_{1*}), \ldots, \Theta(X_{N*}), Y_1, \ldots, Y_N)$ is

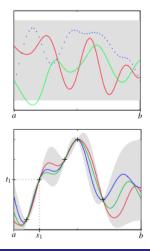
$$\begin{bmatrix} K & K* \\ K*^T & K** \end{bmatrix}$$

- Finally there is a lemma that given a partition (A, B) with X = (X_A, X_B) Gaussian in ℝ^d = ℝ^Axℝ^B, computes the conditional distribution X_A|(X_B = x_B)
- Using this lemma we find that the posterior of a GP(0, K) under the observations $Y_i = \Theta(x_i) + \epsilon_i$ is again Gaussian. Its finite-dimensional marginal distributions at any finite set $\{X_{*1}, \ldots, X_{*N}\}$ is the Gaussian with mean and covariance defined below

$$\mathbb{E}[Y_*|Y] = \mathcal{K}_*(\mathcal{K} + \sigma^2 \mathbf{I})^{-1} Y$$
$$Cov[Y_*|Y] = \mathcal{K}_{**} - \mathcal{K}_*^T (\mathcal{K} + \sigma^2 \mathbf{I})^{-1} \mathcal{K}_*$$

Posterior GP

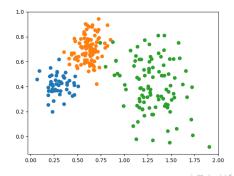
- So we've seen that the posterior p(Θ|data) is also a Gaussian process (distribution over functions).
- This can be thought of as quantifying prediction uncertainty.



Dirichlet Processes Motivation

- Consider the task of clustering with a *finite* mixture model.
- Let $\theta_1, ..., \theta_k$ be parameters associated with each cluster.
- Let $c_1, ..., c_k$ be cluster weightings, i.e. $\sum_i c_i = 1$ and $\forall i, c_i \ge 0$.
- Assuming continuous data, the mixture density is:

$$p(x) = \sum_i c_i p(x|\theta_i)$$



- A **Bayesian Mixture** treats c_i and θ_i as random variables.
- A simple way to instantiate c_i and θ_i is to sample them i.i.d. from fixed distributions p(c) and $p(\theta)$
- To ensure the cluster weightings c_i are valid $(\sum_i c_i = 1 \text{ and } \forall i, c_i \ge 0)$, we need apply normalization.
- However, naive normalization schemes (e.g. divide by sum, softmax) fail when there are infinitely many positive i.i.d. variables.
- The Dirichlet Process (DP) solves this problem and extends Bayesian mixtures to infinite components.

Dirichlet Processes Stick-Breaking Construction

- An intuitive construction of the DP is via stick-breaking.
- Consider a stick of unit length, we break it into infinite pieces.
- The length of each piece would be the weighting for each cluster.
- To do this, we sample *ratio* v_i from a distribution on [0, 1] each time.
- We take v_i of the stick and leave the rest $1 v_i$ for next iteration.
- The stick lengths (cluster weightings) are $c_i = (1 \sum_{j=1}^{i-1} c_j)v_i$.

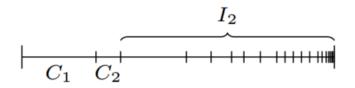


Figure from Lecture Notes on Bayesian Nonparametrics, Peter Orbanz

Definition

If $\alpha > 0$ and G_0 is a probability measure on the parameter space Ω_{θ} , the random discrete probability measure Θ generate by:

$$V_1, V_2, \dots \sim_{iid} Beta(1, \alpha)$$
$$C_k := V_k \prod_{j=1}^{k-1} (1 - V_j)$$
$$\Theta_1, \Theta_2, \dots \sim_{iid} G_0$$

is called a Dirichlet Process (DP), with base measure G_0 and concentration parameter α , denoted by $DP(\alpha, G_0)$.

- Assume true data generating process first generates a discrete measure from DP, i.e. G ~ DP(α, G₀).
- Assume observations are generated from G i.i.d., i.e. $\theta_1, ..., \theta_n \sim_{iid} G$.
- It is shown (by Ferguson) that the posterior over G is also a DP:

$$p(G|\theta_1,...,\theta_n) = DP(\alpha + n, \frac{\alpha G_0 + \sum_{i=1}^n \delta_{\theta_i}}{\alpha + n})$$

- δ_{θ} denotes the dirac delta (point mass) at θ .
- Conjugacy makes posterior inference easy for DP.

- Chinese Restaurant Process (CRP) is another interpretation of DP.
- Recall DP deals with the task of clustering.
- In clustering, if we abstract away the details of each cluster and only care about the cluster indices, we end up defining a partition.
- For instance, the clustering $(\{X_1, X_2, X_5\}, \{X_3\}, \{X_4\})$ defines the partition $(\{1, 2, 5\}, \{3\}, \{4\})$.
- The partition can also be extended to (countably) infinite sets.

- CRP defines distribution on partitions of the naturals.
- More formally, $CRP(\alpha)$ defines a generative process:
- For n = 1, 2, 3, ...
 - insert *n* into an existing block Ψ_k with probability $\frac{|\Psi_k|}{\alpha+(n-1)}$
 - create a new block with only *n* with probability $\frac{\alpha}{\alpha+(n-1)}$
- CRP does not have a base measure parameter G₀ because we abstract away the "location" of clusters.
- One intuition is that each time a person indexed by *n* comes into a restaurant and decides to sit at a random table with probability proportional to the number of people seated or α if no one is seated.

- We can add a further hierarchy to DPs to create an infinite mixture model.
- Such models are called Dirichlet Process Mixtures (DPM).
- Assume the true data generating process is:

 $G \sim DP(\alpha, G_0)$ $\theta_i \sim_{iid} G$ $x_i \sim_{iid} p(x|\theta_i)$

• In this case, θ_i is a local latent variable of the observed x_i .

Dirichlet Processes give us a distribution over potentially infinite partitions $\{\{e_1, e_4, e_2\}, \{e_3, e_5\}, \{e_6\}, \ldots\}$ where each element e_i belongs to exactly 1 partition.

What if elements could belong to multiple groups? Enter the Indian Buffet Process.

$$\mathsf{Partition} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \quad \mathsf{Multiple \ Groups} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Simple when number of groups is fixed, but what if number of groups is infinite?

Indian restaurant interpretation. Dishes = Groups. Assume an infinite number of dishes ordered arbitrarily. Has 1 parameter α .

- Customer 1 takes first $Poisson(\alpha)$ dishes
- Customer i:
 - takes dish k with probability = $\frac{\# \text{ times } k \text{ previously chosen}}{i}$
 - takes Poisson $\left(\frac{\alpha}{i}\right)$ new dishes

Like the Chinese Restaurant Process, this process is exchangeable in the ordering of the customers. Also in the dishes! Alternate Generative Process: $X_{ii} = I$ [customer i takes dish i]

Alternate Generative Process: $X_{ij} = I$ [customer i takes dish j].

- $w_j \sim \text{Beta}(1, \alpha/j)$
- $X_{ij} \sim \text{Bernoulli}(w_j)$

Assumes datapoint X_i is dependent on a finite number of unobserved attributes z_j where there are an infinite number of potential z_j . X_i could be the set of movies that user *i* has viewed and each z_j could be a type of movie. So X_i is determined by which types of movies user *i* likes. Definitions:

- $X_{ij} = I[$ user i has watched movie j $], i \in [1, N], j \in [1, D]$
- $Z_{ij} = I[$ user i likes movie type $j], i \in [1, N], j \in [1, \infty]$

•
$$\phi_{ij} = movie i's$$
 relation to type j

•
$$X_{ij} = \sum_{k=1}^{\infty} Z_{ik} \phi_{jk} + \epsilon_{ij}, \epsilon_{ij} \sim p(\epsilon_{ij})$$

Inference performed via MCMC or with variational inference and truncated IBP posterior with maximum T features.