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Statistical Inference

In general, given some data X, we can assume that:
data = underlying pattern + noise

Can interpret P(X |θ) as P(data|pattern)

The problem of statistical inference then is to figure out the
underlying pattern

Think of a model M as a set of probability measures on X according
to some parameters θ. M = {Pθ|θ ∈ T} where T is the space in
which θ takes values in.

M is parametric if T has finite dimension, and nonparametric
otherwise.

Will Grathwohl, Xuechen Li, Eleni Triantafillou Bayesian Nonparametrics March 2, 2018 4 / 26



Example: Parametric vs Nonparametric Density Estimation

Before discussing Bayesian nonparametrics, lets consider a simple
example of a nonparametric model and compare it to a parametric
alternative

Assume we are given some observed data, shown below and want to
perform density estimation

Figure from Lecture Notes on Bayesian Nonparametrics, Peter Orbanz
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Example: Parametric vs Nonparametric Density Estimation

In the figure:

Left: Fit 1 Gaussian to the data. In this case θ consists of a mean
and standard deviation (regardless of the number of data points).

Right: Kernel density estimation. Add a new Gaussian g for each data
point xi , centered at xi . The density estimate is then
p(x) = 1

n

∑n
i=1 g(x |xi , σ)

The Gaussian model is parametric, with 2 degrees of freedom, while
the Kernel density estimator is non-parametric, with the number of
parameters growing as more data points are observed
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Choosing the parameter space?

How to decide on a parameter space to model data?
For example, in the left figure below, a reasonable choice for the
parameter is a line, so the parameter space T ∈ R2 (slope and offset)
If the data instead looks nonlinear like in the right subfigure, what is
a reasonable parameter space? All possible (differentiable?) nonlinear
functions?

Figure from Lecture Notes on Bayesian Nonparametrics, Peter Orbanz
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Bayesian Nonparametrics

Bayesians treat uncertainty as randomness

We do not know the parameter underlying the data - treat it as a
random variable Θ taking values from T.

Make a modeling assumption, that Θ ∼ Q for some distribution Q,
referred to as the ‘prior’.

A Bayesian model consists of the prior Q and the observational model
M as above

Data is generated as Θ ∼ Q, X1,X2, . . . |Θ ∼iid PΘ

We are then interested in the posterior Q(Θ|X1 = x1, . . . ,Xn = xn)

Nonparametric Bayesian Model: infinite parameter space T.
Therefore requires infinite-dimensional distributions for Q and M.
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Gaussian Processes Definition

Let T be a space of functions from S to R where S ⊂ Rd (e.g. given
d-dimensional points, predict a real-valued target for each one)

Let Θ be a random element of T. Then it is a random function.

Let s ∈ S be a (d-dimensional) point

Then Θ(s) is a random variable in R.

Fixing n points then gives a random vector in Rn:
(Θ(s1),Θ(s2), . . . ,Θ(sn))

Consider the quantity µs1,...,sn = (Θ(s1),Θ(s2), . . . ,Θ(sn))

The distributions defined by µ are called ‘finite-dimensional marginals’
of µ
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Gaussian Processes Definition

µ is called a Gaussian Process (GP) on T if for any finite set
Sn = {s1, . . . , sn}, µSn is an n-dimensional Gaussian.

Define m(s) = E[Θ(s)] and k(s1, s2) = Cov [Θ(s1),Θ(s2)]

So, if µ is a GP, then each finite-dimensional marginal
µSn ∼ N (m(Sn), k(Sn)) where

m(Sn) =

m(s1)
. . .

m(sn)

 and k(Sn) =

k(s1, s1) . . . k(s1, sn)
. . . . . .

k(s1, sn) . . . k(s1, sn)
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Gaussian Process Regression

Assume we observe D = {(xi, yi )}Ni=1 = (X, y) where xi’s are
observations in Rd and yi ’s are targets in R.

The regression problem: find a function θ mapping observations to
targets.

One approach is to treat this function as a random variable Θ and
infer a distribution over functions given data p(Θ|X, y)

Since Θ is a random function, we can place a GP prior over it:
Θ ∼ GP(0,K ).

We can view the responses as random variables too: Yi = Θ(xi ) + εi
where εi ∼ N (0, σ2) is some random independent noise
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Gaussian Process Regression

We are then looking for the posterior p(Θ|Y1, . . . ,YN)

We can compute its finite dimensional marginals
p(Θ(X1∗), . . . ,Θ(XN∗)|Y1, . . . ,YN) where {(Xi∗,Yi∗)}Ni=1 denotes
new data

What is the distribution of the variables that we are conditioning on?
Recall that each Yi is the sum of 2 Gaussians.

For convenience denote Y∗ = {Θ(X1∗), . . . ,Θ(XN∗} and
Y = {Y1, . . . ,YN}
Let K be the covariance of the variables in Y

K =

k(x1, x1) + σ2 . . . k(x1, xn)
. . . . . .

k(xn, x1) . . . k(xn, xn) + σ2


Also let K∗ = k(Y∗,Y ), and K∗∗ = k(Y∗,Y∗)
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Gaussian Process Regression

The covariance of the joint (Θ(X1∗), . . . ,Θ(XN∗),Y1, . . . ,YN) is[
K K∗

K∗T K ∗ ∗

]
Finally there is a lemma that given a partition (A,B) with
X = (XA,XB) Gaussian in Rd = RAxRB , computes the conditional
distribution XA|(XB = xB)

Using this lemma we find that the posterior of a GP(0,K ) under the
observations Yi = Θ(xi ) + εi is again Gaussian. Its finite-dimensional
marginal distributions at any finite set {X∗1, . . . ,X∗N} is the Gaussian
with mean and covariance defined below

E[Y∗|Y ] = K∗(K + σ2I)−1Y

Cov [Y∗|Y ] = K∗∗ − KT
∗ (K + σ2I)−1K∗
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Posterior GP

So we’ve seen that the posterior p(Θ|data) is also a Gaussian process
(distribution over functions).
This can be thought of as quantifying prediction uncertainty.
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Dirichlet Processes Motivation

Consider the task of clustering with a finite mixture model.
Let θ1, ..., θk be parameters associated with each cluster.
Let c1, ..., ck be cluster weightings, i.e.

∑
i ci = 1 and ∀i , ci ≥ 0.

Assuming continuous data, the mixture density is:

p(x) =
∑
i

cip(x |θi )
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Dirichlet Processes Motivation

A Bayesian Mixture treats ci and θi as random variables.

A simple way to instantiate ci and θi is to sample them i.i.d. from
fixed distributions p(c) and p(θ)

To ensure the cluster weightings ci are valid (
∑

i ci = 1 and
∀i , ci ≥ 0), we need apply normalization.

However, naive normalization schemes (e.g. divide by sum, softmax)
fail when there are infinitely many positive i.i.d. variables.

The Dirichlet Process (DP) solves this problem and extends Bayesian
mixtures to infinite components.
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Dirichlet Processes Stick-Breaking Construction

An intuitive construction of the DP is via stick-breaking.

Consider a stick of unit length, we break it into infinite pieces.

The length of each piece would be the weighting for each cluster.

To do this, we sample ratio vi from a distribution on [0, 1] each time.

We take vi of the stick and leave the rest 1− vi for next iteration.

The stick lengths (cluster weightings) are ci = (1−
∑i−1

j=1 cj)vi .

Figure from Lecture Notes on Bayesian Nonparametrics, Peter Orbanz
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Dirichlet Processes Stick-Breaking Construction

Definition

If α > 0 and G0 is a probability measure on the parameter space Ωθ, the
random discrete probability measure Θ generate by:

V1,V2, ... ∼iid Beta(1, α)

Ck :=Vk

k−1∏
j=1

(1− Vj)

Θ1,Θ2, ... ∼iid G0

is called a Dirichlet Process (DP), with base measure G0 and
concentration parameter α, denoted by DP(α,G0).
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Dirichlet Processes Posterior

Assume true data generating process first generates a discrete
measure from DP, i.e. G ∼ DP(α,G0).

Assume observations are generated from G i.i.d., i.e. θ1, ..., θn ∼iid G .

It is shown (by Ferguson) that the posterior over G is also a DP:

p(G |θ1, ..., θn) = DP(α + n,
αG0 +

∑n
i=1 δθi

α + n
)

.

δθ denotes the dirac delta (point mass) at θ.

Conjugacy makes posterior inference easy for DP.
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Dirichlet Processes and Chinese Restaurant Processes

Chinese Restaurant Process (CRP) is another interpretation of DP.

Recall DP deals with the task of clustering.

In clustering, if we abstract away the details of each cluster and only
care about the cluster indices, we end up defining a partition.

For instance, the clustering ({X1,X2,X5}, {X3}, {X4}) defines the
partition ({1, 2, 5}, {3}, {4}).

The partition can also be extended to (countably) infinite sets.
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Dirichlet Processes and Chinese Restaurant Processes

CRP defines distribution on partitions of the naturals.

More formally, CRP(α) defines a generative process:

For n = 1, 2, 3, ...

insert n into an existing block Ψk with probability |Ψk |
α+(n−1)

create a new block with only n with probability α
α+(n−1)

CRP does not have a base measure parameter G0 because we abstract
away the “location” of clusters.

One intuition is that each time a person indexed by n comes into a
restaurant and decides to sit at a random table with probability
proportional to the number of people seated or α if no one is seated.
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Dirichlet Process Mixture Models

We can add a further hierarchy to DPs to create an infinite mixture
model.

Such models are called Dirichlet Process Mixtures (DPM).

Assume the true data generating process is:

G ∼ DP(α,G0)

θi ∼iid G

xi ∼iid p(x |θi )

In this case, θi is a local latent variable of the observed xi .
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Indian Buffet Processes

Dirichlet Processes give us a distribution over potentially infinite partitions
{{e1, e4, e2}, {e3, e5}, {e6}, . . .} where each element ei belongs to exactly
1 partition.
What if elements could belong to multiple groups? Enter the Indian Buffet
Process.

Partition =



1 0 0 0
0 0 1 0
1 0 1 0
1 0 0 0
1 0 0 1
...

...
...

...


Multiple Groups =



1 0 1 0
0 1 1 1
1 0 1 0
1 1 0 0
1 0 1 1
...

...
...

...


Simple when number of groups is fixed, but what if number of groups is
infinite?

Will Grathwohl, Xuechen Li, Eleni Triantafillou Bayesian Nonparametrics March 2, 2018 24 / 26



Indian Buffet Processes

Indian restaurant interpretation. Dishes = Groups. Assume an infinite
number of dishes ordered arbitrarily. Has 1 parameter α.

Customer 1 takes first Poisson(α) dishes

Customer i:

takes dish k with probability = # times k previously chosen
i

takes Poisson
(
α
i

)
new dishes

Like the Chinese Restaurant Process, this process is exchangeable in the
ordering of the customers. Also in the dishes!
Alternate Generative Process: Xij = I[customer i takes dish j].

wj ∼ Beta(1, α/j)

Xij ∼ Bernoulli(wj)
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Applications of the IBP: Latent Feature Models

Assumes datapoint Xi is dependent on a finite number of unobserved
attributes zj where there are an infinite number of potential zj . Xi could
be the set of movies that user i has viewed and each zj could be a type of
movie. So Xi is determined by which types of movies user i likes.
Definitions:

Xij = I[user i has watched movie j], i ∈ [1,N], j ∈ [1,D]

Zij = I[user i likes movie type j ], i ∈ [1,N], j ∈ [1,∞]

φij = movie i ’s relation to type j

Xij =
∑∞

k=1 Zikφjk + εij , εij ∼ p(εij)

Inference performed via MCMC or with variational inference and truncated
IBP posterior with maximum T features.
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