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1. Gradient estimators, 20 points. All else being equal, it’s useful for a gradient estimator
to be unbiased. This is because the unbiasedness of a gradient estimator guarantees that, if we
decay the step size and run stochastic gradient descent for long enough (see Robbins & Monroe),
it will converge to a local optimum.

The standard REINFORCE, or score-function estimator is defined as:

ĝSF[f ] = f(b)
∂

∂θ
log p(b|θ), b ∼ p(b|θ)(1.1)

(a) [5 points] First, let’s warm up with the score function. Prove that the score function has
zero expectation, i.e. Ep(x|θ)[∇θ log p(x|θ)] = 0. Assume that you can swap the derivative
and integral operators.

(b) [5 points] Show that REINFORCE is unbiased: Ep(b|θ)
[
f(b) ∂∂θ log p(b|θ)

]
= ∂

∂θEp(b|θ)[f(b)].
(c) [5 points] Show that REINFORCE with a fixed baseline is still unbiased, i.e. show that

Ep(b|θ)
[
[f(b)− c] ∂

∂θ
log p(b|θ)

]
=

∂

∂θ
Ep(b|θ)[f(b)]

for any fixed c.
(d) [5 points] If the baseline depends on b, then REINFORCE will in general give biased

gradient estimates. Give a concrete for p(b|θ), f(), c(), and θ example where

Ep(b|θ)
[
[f(b)− c(b)] ∂

∂θ
log p(b|θ)

]
6= ∂

∂θ
Ep(b|θ)[f(b)]

for some function c(b), and show that it is biased. That is, compute the actual expectation
of both sides and write the numbers.

The takeaway is that you can use a baseline to reduce the variance of REINFORCE, but not
one that depends on the current action.

2. Comparing variances of gradient estimators, 25 points. If we restrict ourselves to
consider only unbiased gradient estimators, then the main property we need to worry about is
the variance of our estimators. In general, optimizing with a lower-variance unbiased estimator
will converge faster than a high-variance unbiased estimator. However, which estimator has the
lowest variance can depend on the function being optimized. In this question, we’ll look at which
gradient estimators scale to large numbers of parameters, by computing their variance as a function
of dimension.

For simplicity, we’ll consider a toy problem. The goal will be to estimate the gradients of the
expectation of a sum of D independent one-dimensional Gaussians, along with a regularization
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term. Each Gaussian xi in independent, has unit variance, and its mean is given by an element
of the D-dimensional parameter vector θ:

f(x) =

D∑
d=1

xd(2.1)

L(θ) = Ex∼p(x|θ)[f(x)](2.2)

(a) [4 points] As a warm-up, compute the variance of a single-sample simple Monte Carlo
estimator of the objective L(θ):

L̂MC =

D∑
d=1

xd, where each xd ∼iid N (θd, 1)(2.3)

That is, compute V
[
L̂MC

]
as a function of D.

(b) [5 points] The score-function, or REINFORCE estimator with a baseline has the form:

ĝSF[f ] = [f(x)− c(θ)] ∂
∂θ

log p(x|θ), x ∼ p(x|θ)(2.4)

Derive a closed form for this gradient estimator for the objective defined above as a de-
terministic function of ε, a D-dimensional vector of standard normals. Set the baseline to
c(θ) =

∑D
d=1 θd. Hint: When simplifying ∂

∂θ log p(x|θ), you shouldn’t take the derivative
through x, even if it depends on θ. To help keep track of what is being differentiated, you
can use the notation ∂

∂θg(θ̄, θ) to denote taking the derivative only w.r.t. the second θ.
(c) [8 points] Derive the variance of the above gradient estimator. Because gradients are D-

dimensional vectors, their covariance is a D×D matrix. To make things easier, we’ll consider
only the variance of the gradient with respect to the first element of the parameter vector,
θ1. That is, derive the scalar value V

[
ĝSF1
]

as a function of D. Hint: The third moment of
a standard normal is 0, and the fourth moment is 3. As a sanity check, consider the case
where D = 1.

(d) [8 points] Next, let’s look at the gold standard of gradient estimators, the reparameteriza-
tion gradient estimator, where we reparameterize x = T (θ, ε):

ĝREPARAM[f ] =
∂f

∂x

∂x

∂θ
, ε ∼ p(ε)(2.5)

In this case, we can use the reparameterization x = θ + ε, with ε ∼ N (0, I). Derive this
gradient estimator for ∇θL(θ), and give V

[
ĝREPARAM
1

]
as a function of D.

3. Search Trees, 5 points. The expectimax computes the optimal first action in an Markov
decision process, summing over all S possible states and taking a max over all A possible actions
at each time step, to a horizon of T steps:

a1∗ = argmax
a1

Ep(s1|a1)
[
R(s1) + max

a2
Ep(s2|a2,s1)

[
R(s2) + · · ·+ Ep(sT |aT ,sT−1)[R(sT )] . . .

]]
(a) [5 points] What is the asymptotic time complexity of computing the exact expectimax by

exhaustive enumeration, as a function of S, A, and T? You can assume R has cost O(1).
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