
CSC2547: 
Learning to Search

Lecture 2: Background and gradient esitmators

Sept 20, 2019

Admin
• Course email: learn.search.2547@gmail.com

• Piazza: piazza.com/utoronto.ca/fall2019/csc2547hf

• Good place to find project partners

• leaves a paper trail of being engaged in course, asking good
questions, bring helpful or knowledgable (for letters of rec)

• Project sizes: Groups of up to 4 are fine.

• My office hours: Mondays 3-4pm in Pratt room 384

• TA office hours will have its own calendar

mailto:learn.search.2547@gmail.com
http://piazza.com/utoronto.ca/fall2019/csc2547hf

Due dates

• Assignment 1: Released Sept 24th, due Oct 3

• Project proposals: Due Oct 17th, returned Oct 28th

• Drop date: Nov 4th

• Project presentations: Nov 22nd and 29th

• Project due: Dec 10th

FAQs
• Q: I’m not registered / on the waitlist / auditing, can I still

participate in projects or presentations?

• A: Yes, as long as it doesn’t make more grading + are
paired with someone enrolled. Use piazza to find
partners.

• Q: How can I make my long-term PhD project into a class
project?

• A: By making an initial proof of concept, possibly with
fake / toy data

This week: 
Course outline, and where we’re stuck

• The Joy of Gradients

• Places we can’t use them

• Outline of what we’ll cover in course and why

• Detailed look at one approach to ‘learning to search’:
RELAX, discuss where and why it stalled out

What recently became easy
in machine learning?

• Training models with continuous
intermediate quantities (hidden
units, latent variables) to model or
produce high-dimensional data
(images, sounds, text)

• Discrete output mostly OK,  
Discrete hiddens or parameters
are a no-no

What is still hard?
• Training GANs to generate text

• Training VAEs with discrete latent variables

• Training agents to communicate with each other using
words

• Training agent or programs to decide which discrete
action to take.

• Training generative models of structured objects of
arbitrary size, like programs, graphs, or large texts.

Adversarial Generation of Natural Language.
Sai Rajeswar, Sandeep Subramanian, Francis Dutil,

Christopher Pal, Aaron Courville, 2017

“We successfully trained the RL-NTM to solve a number of
algorithmic tasks that are simpler than the ones solvable by

the fully differentiable NTM.”
Reinforcement Learning Neural Turing Machines

Wojciech Zaremba, Ilya Sutskever, 2015

Why are the easy things easy?

• Gradients give more
information the more
parameters you have

• Backprop (reverse-mode AD)
only takes about as long as
the original function

• Local optima less of a
problem than you think

Source: xkcd

Gradient descent
• Cauchy (1847)

Why are the hard things hard?
• Discrete variables means we

can’t use backdrop to get
gradients

• No cheap gradients means
that we don’t know which
direction to move to improve

• Not using our knowledge of
the structure of the function
being optimized

• Becomes as hard as
optimizing a black-box
function

Scope of applications:

An illustration of the search space of a sequential tagging example that assigns a part-of-speech tag sequence to the sentence “John saw Mary.” Each state represents a partial
labeling. The start state b = [] and the set of end states E = {[N V N], [N V V], . . .}. Each end state is associated with a loss. A policy chooses an action at each state in the
search space to specify the next state.

• Any problem with a large search space, and a well-defined objective that
can’t be evaluated on partial inputs.

• e.g. SAT solving, proof search, writing code, neural architecture design

Questions I want to
understand better

• Current state of the art in

• MCTS

• SAT solving

• program induction

• planning

• curriculum learning

• adaptive search algorithms

Week 3: Monte Carlo Tree
Search and applications

• Background, AlphaZero, thinking fast and slow

• Applications to:

• planning chemical syntheses

• robotic planning (sort of)

• Recent advances

Week 4: Learning to SAT
Solve and Prove Theorems

• Learning neural nets to guess which assignments are satisfiable / if any a clause is
satisfiable

• Can convert to any NP-complete problem

• Need higher-order logic to prove Reimann Hypothesis?

• Overview of theorem-proving environments, problems, datasets

• Overview of literature:

• RL approaches

• Continuous embedding approaches

• Curriculum learning

• Less focus on relaxation-based approaches

What can we hope for?
• Searching, inference, SAT are all NP-Hard

• What success looks like:

• A set of different approaches with different pros and
cons

• Theoretical and practical understand of what methods
to try and when

• Ability to use any side information or re-use previous
solutions

Week 5: Nested continuous
optimization

• Training GANs, hyperparameter optimization, solving games, meta-
learning can all be cast as optimizing and optimization procedure.

• Three main approaches:

• Backprop through optimization (MAML, sort of)

• Learn a best-response function (SMASH, Hypernetworks)

• Use implicit function theorem (iMAML, deep equilibirum models)

• need inverse of Hessian of inner problem at optimum

• Game theory connections (Stackleberg Games)

✓1
initialize
params

update params

rL

✓t�1

update params

rL

✓2

✓t

evaluate
validation

loss

regularization
params

optimization
params

training data

validation data

validation
losstraining

1. Snoek, Larochelle and Adams, Practical Bayesian Optimization of Machine Learning Algorithms, NIPS 2012
2. Golovin et al., Google Vizier: A Service for Black-Box Optimization, SIGKDD 2017
3. Bengio, Gradient-Based Optimization of Hyperparameters, Neural Computation 2000
4. Domke, Generic Methods for Optimization-Based Modeling, AISTATS 2012

✓1
initialize
params

update params

rL

✓t�1

update params

rL

✓2

✓t

evaluate
validation

loss

regularization
params

optimization
params

training data

validation data

validation
loss

1. Snoek, Larochelle and Adams, Practical Bayesian Optimization of Machine Learning Algorithms, NIPS 2012
2. Golovin et al., Google Vizier: A Service for Black-Box Optimization, SIGKDD 2017
3. Bengio, Gradient-Based Optimization of Hyperparameters, Neural Computation 2000
4. Domke, Generic Methods for Optimization-Based Modeling, AISTATS 2012

Gradient-based Hyperparameter Optimization
Dougal Maclaurin, David Duvenaud, Ryan P. Adams

Motivation

•Hyperparameters are everywhere

•Gradient-free optimization fails in high dimensions

•Why not use gradients? Then we could optimize thousands of hyperparameters!

Stochastic gradient descent is a function

•We want to optimize validation loss

•Validation loss is a function of SGD

• SGD is a smooth function mapping
(init weights, hypers) ! trained weights

• Let’s compute its gradients!

Example: Optimizing learning rate schedules

We can optimize learning rate schedules separately for each layer of a neural network
and each iteration of training:

Learning rate

How did we optimize it? By SGD on top of SGD, using meta-gradients:

Hyper-gradient with respect to learning rate

Optimizing initialization distributions

•We can optimize thousands of hyperparameters

• For instance, detailed weight initialization schemes
•Meta-learned values roughly match 1/

p
(N)

heuristic

Weight initialization scale

Optimizing training data

Synthetic MNIST training examples

Training data can be viewed as just another hyperparameter. We meta-learned MNIST
training examples starting from blank pixels, optimizing validation loss.

Optimizing network architecture

•Can optimize thousands of regularization params.

•Architecture can be controlled through regularization.

•We let the network choose which layers to share in a multi-task problem.

R
ot
at
ed

O
ri
gi
na
l

•Network learned to share weights between related tasks.

• Learned sharing works better than all-or-nothing.

Input Middle Output Train Test
weights weights weights error error

Separate
networks

0.61 1.34

Tied
weights

0.90 1.25

Learned
sharing

0.60 1.13

Chaotic learning dynamics

• Limitation: Gradient can become
chaotic

• a.k.a. exploding gradients

•Happens when learning rate is
near the optimum.

Learning rate

Stochastic gradient descent is reversible

To save memory during reverse-mode di↵erentiation, we run SGD in reverse.

Forward update rule:

xt+1 xt + ↵vt

vt+1 �vt �rL (xt+1)

Reverse update rule:

vt (vt+1 +rL (xt+1)) /�

xt xt+1 � ↵vt

Need to store tiny corrections to each reversal step to ensure exact reversal.

Conclusion

•We can compute gradients of learning procedures...

•This lets us optimize thousands of hyperparameters!

•All code for experiments at github.com/HIPS/hypergrad

•We also wrote an autodi↵ package that works on standard Numpy code:
github.com/HIPS/autograd

Optimized training schedules

0 40 80
Schedule index

0

2

4

6

Le
ar

ni
ng

 ra
te

Layer 1
Layer 2
Layer 3
Layer 4

P(digit | image)

More project ideas

• Using the approximate implicit function theorem to speed
up training of GANs. E.g. iMaml

Week 6: Active learning,
POMDPs, Bayesian Optimization
• Distinction between exploration and exploitation dissolves under

Bayesian decision theory: Planning over what you’ll learn and do.

• Hardness results

• Approximation strategies:

• One-step heuristics (expected improvement, entropy
reduction)

• Monte-Carlo planning

• Differentiable planning in continuous spaces

More project ideas

• Efficient nonmyopic search: “On the practical side we just
did one-step lookahead with a simple approximation, a lot
you could take from the approximate dynamic
programming literature to make things work better in
practice with roughly linear slowdowns I think.”

Week 7: Evolutionary approaches
and Direct Optimization

• Genetic algorithm is a vague class of algorithms, very
flexible

• Fun to tweak, hard to get to work

• Recent connection of one type (Evolution Strategies) to
standard gradient estimators, optimizing a surrogate
function

• Direct optimization: A general strategy for estimating
gradients through discrete optimization, involving a local
discrete search

Aside: Evolution Strategies
optimize a linear surrogate

ŵ = (X𝖳X)−1X𝖳y

≊ 𝔼 [(X𝖳X)]−1 X𝖳y

= [Iσ2]−1 X𝖳y

= [Iσ2]−1(ϵσ)𝖳y

= ∑
i

ϵiyi

σ

= ∑
i

ϵi f(ϵiσ)
σ

ϵ ∼ 𝒩(0, I)

x = ϵσ

Aside: Evolution Strategies
optimize a linear surrogate

• Throws away all observations
each step

• Use a neural net surrogate, and
experience replay

• Distributed ES algorithm works for
any gradient-free optimization
algorithm

• w/ students Geoff Roeder, Yuhuai
(Tony) Wu, Jaiming Song

More project ideas

• Generalize evolution strategies to non-linear surrogate
functions

Week 8: Learning to
Program

• So hard, I’m putting it at the end. Advanced projects.

• Relaxations (Neural Turing Machines) don’t scale. Naive
RL approaches (trial and error) don’t work

• Can look like proving theorems (Curry-Howard
correspondence)

• Fun connections to programming languages,
dependent types

• Lots of potential for compositionality, curriculum learning

Week 9: Meta-reasoning
• Playing chess: Which piece to think about moving? Need to think

about that.

• Proving theorems: Which lemma to try to prove first? Need to think
about that.

• Bayes’ rule is no help here.

• Few but excellent works:

• Stuart Russel + Students (Meta-reasoning)

• Andrew Critch + friends (Reasoning about your own future
beliefs about mathematic statements)

Week 10: Asymptotically
Optimal Algorithms

• Fun to think about, hard to implement.

• Goedel machine: Spend 50% of time searching for
software updates of yourself that will provably improve
expected performance. Run one whenever found.

• How to approximate?

• AIXI: Use Bayesian decision theory on the most powerful
computable prior: set of all computable programs.

• How to approximate?

Questions

Break / Sign up for Learning
to SAT solve + thm prove

Backpropagation
Through

Backpropagation
Through

Backpropagation
Through

Will Grathwohl
Dami Choi
Yuhuai Wu

 Geoff Roeder
David Duvenaud

Where do we see this guy?

• Variational Inference

• Hamiltonian Monte Carlo

• Policy Optimization

• Hard Attention

L(✓) = Ep(b|✓)[f(b)]

Bayesian optimization
doesn’t scale yet

• Bayesopt is usually expensive, relative to model evals

• Global surrogate models not good enough in high dim.

• Even for expensive black-box functions, gradient-based optimization
is embarrassingly competitive

• Can we add some cheap model-based optimization to REINFORCE?

Shahriari et al., 2016

REINFORCE (Williams, 1992)

• Unbiased

• Works for any f, not
differentiable or even
unknown

• high variance

ĝREINFORCE[f] = f (b) @
@✓ log p(b|✓), b ⇠ p(b|✓)

ĝREINFORCE[f] = f (b) @
@✓ log p(b|✓), b ⇠ p(b|✓)

Reparameterization Trick:

• Usually lower variance

• Unbiased

• Gold standard, allowed
huge continuous models

• Requires to be known
and differentiable

• Requires to be
differentiable

ĝreparam[f] =
@f
@b

@b
@✓ b = T (✓, ✏), ✏ ⇠ p(✏)

f(b)

p(b|✓)

 Source: Kingma’s NIPS 2015 workshop slides

ĝreparam[f] =
@f
@b

@b
@✓ b = T (✓, ✏), ✏ ⇠ p(✏)

Concrete/Gumbel-softmax

• Tune variance vs bias

• Works well in practice for
discrete models

• Biased

• must be known and
differentiable

• must be differentiable

• Uses undefined behavior of

ĝconcrete[f] =
@f

@�(z/t)
@�(z/t)

@✓ z = T (✓, ✏), ✏ ⇠ p(✏)

p(z|✓)

f(b)

f(b)

Control Variates
• Allow us to reduce variance of a Monte Carlo estimator

• Variance is reduced if

• Need to adapt g as problem changes during optimization

ĝnew(b) = ĝ(b)� c(b) + Ep(b)[c(b)]

corr(g, c) > 0

Our Approach
ĝLAX = gREINFORCE[f]� gREINFORCE[c�] + greparam[c�]

= [f(b)� c�(b)]
@
@✓ log p(b|✓) +

@
@✓ c�(b) b = T (✓, ✏), ✏ ⇠ p(✏)

Our Approach
ĝLAX = gREINFORCE[f]� gREINFORCE[c�] + greparam[c�]

Optimizing the Control Variate

• For any unbiased estimator we can get Monte Carlo
estimates for the gradient of the variance of

• Use to optimize

• Got trick from Ruiz et al. and REBAR paper

ĝ

c�

@

@�
Variance(ĝ) = E

@

@�
ĝ2
�

A self-tuning gradient estimator

• Jointly optimize original problem and surrogate together
with stochastic optimization

• Requires higher-order derivatives

= [f(b)� c�(b)]
@
@✓ log p(b|✓) +

@
@✓ c�(b) b = T (✓, ✏), ✏ ⇠ p(✏)ĝLAX = gREINFORCE[f]� gREINFORCE[c�] + greparam[c�]

What about discrete
variables?

Extension to discrete

• Unbiased for all

p(b|✓)

c�

H(z) = b ⇠ p(b|✓)

Extension to discrete

• Main trick introduced in REBAR (Tucker et al. 2017).

• We just noticed it works for any c()

• REBAR is special case of RELAX where c is concrete relaxation

• We use autodiff to tune entire surrogate, not just temperature

ĝRELAX = [f(b)� c�(z̃)]
@
@✓ log p(b|✓) +

@
@✓ c�(z)�

@
@✓ c�(z̃)

b = H(z), z ⇠ p(z|✓), z̃ ⇠ p(z|b, ✓)

p(b|✓)

Toy Example

• Used to validate REBAR (used t = .45)

• We use t = .499

• REBAR, REINFORCE extremely slow in this case

• Can RELAX improve?

Ep(b|✓)[(t� b)2]

• massively reduced variance

• Surrogate needs time to catch up

Toy Example

Analyzing the Surrogate

• REBAR’s fixed
surrogate only adapts
temperature param.

• RELAX surrogate
balances REINFORCE
variance and
reparameterization
variance

• Optimal surrogate is
always smooth

Define functions, not
computation graphs

Discrete VAEs

• Latent state is 200 Bernoulli variables

• Can’t use reparameterization trick

• Can still use our knowledge of structure of model,
combining REBAR and RELAX:

log p(x) � L(✓) = Eq(b|x)[log p(x|b) + log p(b)� log q(b|x)]

c�(z) = f(��(z)) + r⇢(z)

Bernoulli VAE Results

Rederiving Actor-Critic

• is an estimate of the value function

• This is exactly the REINFORCE estimator using an
estimate of the value function as a control variate

• Why not use action in control variate?

• Dependence on action would add bias

c�

ĝAC =
TX

t=1

@ log ⇡(at|st, ✓)
@✓

"
TX

t0=t

rt0 � c�(st)

#

LAX for RL

• Action-dependence in control variate

• unbiased for policy, and unbiased for baseline

• Standard baseline optimization methods minimize
squared error from reward or value function. We directly
minimize variance.

ĝLAX =
TX

t=1

@ log ⇡(at|st, ✓)
@✓

"
TX

t0=t

rt0 � c�(st, at)

#
+

@

@✓
c�(st, at)c�(st, at)ĝLAX =

TX

t=1

@ log ⇡(at|st, ✓)
@✓

"
TX

t0=t

rt0 � c�(st, at)

#
+

@

@✓
c�(st, at)

@

@✓
c�(st, at)

Model-Free RL “Results”

• Faster convergence, but real story is unbiased critic updates.

• Excellent criticism of experimental setup in “The Mirage of Action-
Dependent Baselines in Reinforcement Learning” (Tucker et al. 2018).
Better experiments would examine high-dimensional action regime.

RELAX Properties
• Pros:

• unbiased

• low variance (after tuning)

• usable when is
unknown, or not
differentiable

• useable when is
discrete

f(b)

p(b|✓)

• Cons:

• need to define surrogate

• when progress is made,
need to wait for
surrogate to adapt

• Higher-order derivatives
still awkward in TF and
PyTorch

Searching through the void?

• RELAX only works
well on categorical
variables.

• Can’t re-use noise
variables between
decision branches
without making true
function jagged + hard
to relax

