Learning Transferable Graph Exploration

Hanjun Dai, Yujia Li, Chenglong Wang, Rishabh Singh, Po-Sen Huang,
Pushmeet Kohli

33rd Conference on Neural Information Processing Systems, Vancouver, Canada.

November 15, 2019

State-space Coverage Problem

Goal: given an environment, efficiently reach as many distinct

states as possible.

Examples:

e model checking: design test inputs to expose as many
potential errors as possible

e active map building: construct a map of unknown

environment efficiently

e exploration in reinforcement learning in general

Common Approaches: Undirected Exploration

High-level Idea: randomly choose states to visit / actions to take
Examples:

1. Random Walk on Graph [2]:

e cover time (expected number of steps to reach every node)
depends on graph structure
e lower-bound on cover time: O(nlogn); upper-bound: O(n?).

2. e-greedy Exploration:
e select random action with probability €

e prevents (to some extent) being locked onto suboptimal action

3. Learning to Prune: more on this later!

Common Approaches: Directed Exploration

High-level Idea: optimize objective that encourages exploration /
coverage (usually some kind of “quantified uncertainty"”)

Examples:

1. UCB for Bandit Problems:

e in addition to maximizing the reward, encourage exploring

2 Int
unselected actions by the term N(a)

2. Intrinsic Motivations in RL:
e pseudo-count (similar to UCB): rewards change in state
density estimates
e information gain: take actions from which you learn about the
environment (reduces entropy)
e predictive error: encourage actions that lead to unpredictable
outcome (for instance unseen states)

Reference: Sergey Levine's Deep Reinforcement Learning Course 2017, Lecture 13

Exploration on Graphs

e goal is to efficiently reach as many vertices as possible

o effectiveness of random walk greatly depends on the graph
structure

Motivation: given the distribution of graphs in training time, can
the algorithm learn efficient covering strategy [1]?

Problem Setup

Environment: Graph-structured state-space

e at time t, the agent observes a graph G;—1 = {E;—1, Vi—1},
and a coverage mask ¢;—1 : V4—1 — {0, 1} indicating the
nodes explored so far

e the agent takes an action a; and receives a new graph G;

e number of steps / actions can be seen as budget for
exploration (to be minimized)

Goal of Learning:

e learn exploration strategy such that given an unseen
environment (from the same distribution as training
environment), the agent can efficiently visit as many unique
states as possible

Defining the Reward

Maximize the number of visited nodes:

max Z Ct(v); equivalently, r; = Z ct(v) — Z Ct*l(v).

{a1,a2...at} ve Vs |V veV, |V| veVi |V|
Objective:
o
max Eg. E re
{01,02...0+} or tzzjl af ~m(alhg B) [t] ’

e hy = {(aj, Gj, ci)}!_; is the exploration history
e 7(alht,0;) is an action policy at time t parameterized by 6,
e D is the distribution of environments

Agent trained with the advantage actor critic algorithm (A2C) [3]

Representing the Exploration History

Representing the Graph:

e use graph neural networks to learn a representation
g : (G,c) = RY (node features are concatenated with the
one-bit information ¢;)

e starting from node u\(,o), update representation via message
passing: uyﬂ) = f(uy), {eu\,,,uf,l)}ue/\/(v)), where A\ is the
neighbor nodes of v and f(-) is parameterized by MLP

e apply attention weighted-sum to aggregate node embedding

e graph representation learned via unsupervised link prediction

Representing the Exploration History (continued)

L GGNN readout

P Simulator i on visible graph
gx 5:;»:‘ to be y | ; Attentiv?
aggregation
@ current "(xts‘ﬁéﬁ);s test cases for prodg?amr:;n;f:ﬁ::fll(z/:s;::crgﬁzsvents for app explorahon e ® oo
O\i (LY

O history i o "y
Slmulator o am
unseen feedback Message
Passing (0)
Evolving steps ﬂchm
raph
amo ©
ry Lt &
am Ok,
G, G, Gs am

Gy t

Representing the History (graph external memory):

e summarize representation up to the current step via
auto-regressive aggregation parameterized as
F(ht) = LSTM(F(htflag(Gta Ct)))'

Toy Problem: Erdos-Renyi Random Graph

Random RandDFS GMETAEXP

e blue node indicates starting point; darker colors represent
more visit counts

e the proposed algorithm explores the graph more efficiently

10

Toy Problem: 2D Maze

5|) oI5
e P T

Full Maze Random RandDFS GMETAEXP

e given fixed budget (T = 36), the agent is trained to traverse
the 6x6 maze as much as possible

e test on held-out mazes from the same distribution

11

Program C

(a) Program coverage results (b) History encoding

1.00 RobustFill RegEx Coverage 0.0B9buSIFill RegEx Coverage, differgnt encoders
0954 ——H——*+——>— S I PR
, 0:90 b 0.0 =
o
— 20854 -
= e—e GMetaExp o
g 0.80 r 085
[-‘5 3 0,75 | expert H W GnnEnc
@ o 0.70 #—« random 2080 BiLstmEnc
_E s 0 £ BowEnc
S 065 F =075 = -= EnvCond
-4 0.60 r — UnCond
0.55 0.70 - . ;
2 3 4 2 3 4 5
inputs generated # inputs generated
1.0 Karel Branch Coverage arel Branch Coverage, different encoder:
.4
094 — Lt T mee-ES
0
g
Sos
= 3 ¥-¥ GnnEnc
g so07 t BiLstmEnc
G o GMetaExp BowEnc
M 0.6 > expert = -+ EnvCond
#—x random 0654/ — UnCond
0.5 - T : 0.60 : v .
2 3 4 5 2 3 4
inputs generated # inputs generated

e data generated by program synthesizer
e learned exploration strategy is comparable or better than

expert-designed heuristic algorithm
12

Limitation and Future Directions

Limitation:

e cannot scale to large programs

e requires reasonable large amount of training data
Possible Extensions:

e reuse computation for efficient representation

e Rl-based approximation for other NP-complete problems

13

Reference

[4 H. Dai, VY. Li C. Wang, R. Singh, P.-S. Huang, and P. Kohli.
Learning transferable graph exploration.
arXiv preprint arXiv:1910.12980, 2019.

[L. Lovész et al.
Random walks on graphs: A survey.

@ V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, pages
1928-1937, 2016.

14

