
Learning Transferable Graph Exploration

Hanjun Dai, Yujia Li, Chenglong Wang, Rishabh Singh, Po-Sen Huang,

Pushmeet Kohli

33rd Conference on Neural Information Processing Systems, Vancouver, Canada.

November 15, 2019

1

State-space Coverage Problem

Goal: given an environment, efficiently reach as many distinct

states as possible.

Examples:

• model checking: design test inputs to expose as many

potential errors as possible

• active map building: construct a map of unknown

environment efficiently

• exploration in reinforcement learning in general

2

Common Approaches: Undirected Exploration

High-level Idea: randomly choose states to visit / actions to take

Examples:

1. Random Walk on Graph [2]:

• cover time (expected number of steps to reach every node)

depends on graph structure

• lower-bound on cover time: O(nlogn); upper-bound: O(n3).

2. ε-greedy Exploration:

• select random action with probability ε

• prevents (to some extent) being locked onto suboptimal action

3. Learning to Prune: more on this later!

3

Common Approaches: Directed Exploration

High-level Idea: optimize objective that encourages exploration /

coverage (usually some kind of “quantified uncertainty”)

Examples:

1. UCB for Bandit Problems:
• in addition to maximizing the reward, encourage exploring

unselected actions by the term
√

ln t
Nt(a)

2. Intrinsic Motivations in RL:
• pseudo-count (similar to UCB): rewards change in state

density estimates

• information gain: take actions from which you learn about the

environment (reduces entropy)

• predictive error: encourage actions that lead to unpredictable

outcome (for instance unseen states)

Reference: Sergey Levine’s Deep Reinforcement Learning Course 2017, Lecture 13

4

Exploration on Graphs

• goal is to efficiently reach as many vertices as possible

• effectiveness of random walk greatly depends on the graph

structure

Motivation: given the distribution of graphs in training time, can

the algorithm learn efficient covering strategy [1]?

5

Problem Setup

Environment: Graph-structured state-space

• at time t, the agent observes a graph Gt−1 = {Et−1,Vt−1},
and a coverage mask ct−1 : Vt−1 → {0, 1} indicating the

nodes explored so far

• the agent takes an action at and receives a new graph Gt

• number of steps / actions can be seen as budget for

exploration (to be minimized)

Goal of Learning:

• learn exploration strategy such that given an unseen

environment (from the same distribution as training

environment), the agent can efficiently visit as many unique

states as possible

6

Defining the Reward

Maximize the number of visited nodes:

max
{a1,a2...at}

∑
v∈Vt

ct(v)

|V|
; equivalently, rt =

∑
v∈Vt

ct(v)

|V|
−
∑

v∈Vt−1

ct−1(v)

|V|
.

Objective:

max
{θ1,θ2...θt}

EG∼D

[
T∑
t=1

EaGt ∼π(a|hGt ,θt)
[
rGt
]]
,

• ht = {(ai ,Gi , ci)}ti=1 is the exploration history

• π(a|ht , θt) is an action policy at time t parameterized by θt

• D is the distribution of environments

Agent trained with the advantage actor critic algorithm (A2C) [3]
7

Representing the Exploration History

Representing the Graph:

• use graph neural networks to learn a representation

g : (G , c)→ Rd (node features are concatenated with the

one-bit information ct)

• starting from node µ
(0)
v , update representation via message

passing: µ
(l+1)
v = f (µ

(l)
v , {euv , µ(l)u }u∈N (v)), where N is the

neighbor nodes of v and f (·) is parameterized by MLP

• apply attention weighted-sum to aggregate node embedding

• graph representation learned via unsupervised link prediction

8

Representing the Exploration History (continued)

Representing the History (graph external memory):

• summarize representation up to the current step via

auto-regressive aggregation parameterized as

F (ht) = LSTM(F (ht−1, g(Gt , ct))).

9

Toy Problem: Erdos-Renyi Random Graph

• blue node indicates starting point; darker colors represent

more visit counts

• the proposed algorithm explores the graph more efficiently

10

Toy Problem: 2D Maze

• given fixed budget (T = 36), the agent is trained to traverse

the 6x6 maze as much as possible

• test on held-out mazes from the same distribution

11

Program Checking

• data generated by program synthesizer

• learned exploration strategy is comparable or better than

expert-designed heuristic algorithm
12

Limitation and Future Directions

Limitation:

• cannot scale to large programs

• requires reasonable large amount of training data

Possible Extensions:

• reuse computation for efficient representation

• RL-based approximation for other NP-complete problems

13

Reference

H. Dai, Y. Li, C. Wang, R. Singh, P.-S. Huang, and P. Kohli.

Learning transferable graph exploration.

arXiv preprint arXiv:1910.12980, 2019.

L. Lovász et al.

Random walks on graphs: A survey.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap,

T. Harley, D. Silver, and K. Kavukcuoglu.

Asynchronous methods for deep reinforcement learning.

In International conference on machine learning, pages

1928–1937, 2016.

14

