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Introduction

» Parameter tuning tedious and time-consuming

» Algorithm configuration using Machine Learning

» Focus on tree search algorithms
» Branch-and-Bound



Tree Search

» Widely used for solving combinatorial and nonconvex problems
» Systematically partition search space
» Prune infeasible and non-optimal branches

» Partition by adding constraint on some variable

Paritioning strategy is important!

» Tremendous effect on the size of the tree



Example: MIPs

Maximize ¢’ x subject to Ax < b

» Some entries of x constrained to be in {0,1}.

» Models many NP-hard problems.

» Applications such as Clustering, Linear separators, etc.

(Winner determination)

maximize Y " > cp vi(b)Tip

s.t. > > beBy,jzb Tip <1 Vj € [m]
ZbeBi Tib <1 Vi e [n]
Tip € {O, 1} Vi e [n],b € B;.



Model

» Application domain as distribution over instances

» Unknown underlying distribution but have sample access

Use samples to learn a variable selection policy.

» As small a search tree as possible in expectation over the
distribution



Variable selection

Learning algorithm returns empirically optimal parameter (ERM)

» Adaptive nature is necessary

» Small change in parameters can cause drastic change
(unconventional, e.g. SCIP)

» Data-driven approach is beneficial



Contribution

Theoretical:
> Use ML to determine optimal weighting of partitioning
procedures.
P Possibly exponential reduction in tree size.

» Sample complexity guarantees that ensure empirical
performance over samples matches expected performance on

the unknown distribution.

Experimental:
» Different partitioning parameters can result in trees of vastly
different sizes.
» Data-dependent vs worst-case generalization guarantees.



MILP Tree Search

» Usually solved using branch-and-bound.

» Subroutines that compute upper and lower bound of a region.
» Node selection policy.

» Variable selection policy (branch on a fractional var).

Fathom every leaf. A leaf is fathomed if:
» Optimal solution to LP relaxation is feasible.
> Relaxation is infeasible.
» Obj. value of relaxation is worse than current OPT.



MILP B & B example
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Variable selection

» Score-based variable selection
» Deterministic function

> Takes partial tree, a leaf and a variable as input and returns a
real value

Some common MILP score functions:
» Most fractional
» Linear scoring rule
» Product scoring rule

» Entropic lookahead



Learning to branch

Goal: Learn convex combination of scoring rules that is nearly
optimal in expectation.

piscorey + ... + [gScoreq

(¢, 0)-learnability



Data-independent approaches

Theorem 3.1. Let
scorei(T,Q,i) = min {EQ —fg+.fo — Eg- } , scores(T,Q,i) = max {F:Q —égr.fo — E:Q_} ,

and cost(Q), pscore; + (1 — p)scores) be the size of the tree produced by BE&B. For every a,b sueh
that % <a<b< % and for all even n > 6, there exists an infinite family of distributions D over
MILP instances with n variables such that if p € [0,1]\ (a,b). then

Eg-p[cost(Q, pscorer + (1 — p)scores)] = Q (2(""9”4)

and if p € (a,b), then with probability 1. cost (Q, pscore; + (1 — p)scores) = O(1). This holds no
matter which node selection policy BEB uses.

» Infinite family of distributions such that the expected tree size
is exponential in n.

» Infinite number of parameters such that the tree size is just a
constant (with probability 1).



Sample complexity guarantees

Assumes path-wise scoring rules.

Lemma 3.3. Let cost be a tree-constant cost function, let scorei and scores be two path-wise
scoring rules, and let () be an arbitrary problem instance over n binary variables. There are T <
2n=1)/2pn jntervals 1y, ..., It partitioning [0, 1] where for any interval I;, across all yu € I, the
scoring Tule pscore; + (1 — p)scorey results in the same search tree.

» Bound on the intrinsic complexity of the algorithm class
defined by range of paremeters.

Theorem 3.7. Let cost be a tree-constant cost function, let score; and scores be two path-
wise scoring rules, and let C be the set of functions {cost (-, uscore; + (1 — p)scorez) : p € [0,1]}.
Then Pdim(C) = O (n?) .

» Implies generalization guarantee.



Experiments
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Stronger generalization guarantees

In practice, number of intervals partioning [0,1] << 2n(n=1)/2pn

» Derive stronger generalization guarantees.
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Related work

> Mostly experimental
» Node selection policy

» Pruning policy



Thank you
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