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Introduction
● Retrosynthesis

Yunhao (Jack) Ji
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A Search Tree Representation
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Motivation and Related Work
● Manual constructing a valid tree can be hard

Yunhao (Jack) Ji
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Motivation and Related Work
● Computer-assisted synthesis planning (CASP) can automatically extract the 

transformations 
● The generated tree has short depth but large branching factors and hard to 

define heuristics.

An illustration of an example search tree to a synthesis planning

Yunhao (Jack) Ji
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Neural Networks 

Learn Chemical Reaction Rules 12.4 million reactions from 
Reaxys database as dataset

Yizhan (Ethan) Jiang
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Neural Networks for Action Selection 

Actions in AlphaGo Actions in Chemical Synthesis 

Yizhan (Ethan) Jiang
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Neural Networks for Action Selection (1/2) 
● Expansion Policy Neural Network

○ Find K most possible molecular transformations

Yizhan (Ethan) Jiang
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Neural Networks for Action Selection (2/2) 
● In-Scope Filter Neural Network

○ Filter out infeasible transformations

Yizhan (Ethan) Jiang
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Neural Network for Rollout 
● Rollout Policy Neural Network

○ Select 10 most possible transformations
○ Only three layers for creating fast rollout policy 

Yizhan (Ethan) Jiang
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Synthesis Planning with 3N-MCTS

Selection

Expansion

Evaluate

Backup

Shuja Khalid

3N  - MCTS

The 3 Neural 
Networks covered 
on previous slides Next!
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Synthesis Planning with 3N-MCTS

Target Molecule

? ?

Selection

Expansion

Evaluate

Backup

: Visit count of state-action pair
: Prior probability of visiting state-action pair

c : Exploration constant
: Scalar value of state-action pair

Shuja Khalid
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Synthesis Planning with 3N-MCTS

A
Target Molecule

B C

Selection

Expansion

Evaluate

Backup

Shuja Khalid
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Synthesis Planning with 3N-MCTS

A
Target Molecule

B C

- Check if state is terminal 
- Terminal → evaluate with the reward function
- Non-terminal → begin rollout/evaluation step

- Recursively sample actions from rollout policy until 
termination condition is met

Selection

Expansion

Evaluate

Backup

Shuja Khalid



Presenter - 

CSC 2547
Learning To Search

Introduction Neural Networks MCTS Results

Synthesis Planning with 3N-MCTS

A

B C

: Visit count of state-action pair

: Custom objective function 
: Reward ∈ [-1,0,1]

Selection

Expansion

Evaluate

Backup

Shuja Khalid
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Synthesis Planning with MCTS

Shuja Khalid

   AlphaGo Zero    3N-MCTS

Algorithm

       

   

Selection Expand and
evaluate

Backup

Selection Expansion

RolloutUpdate

(p, v) = f(s) q = froll(s) , t = fexp(s) , p = fscope(s, r)  

p: probability of selecting each move from a list of action probabilities
v: scalar evaluation that estimates the probability of the current player 
winning from position s

q: scalar evaluation of node 
r: reactions between molecules
t: possible transformations
p: probability of the molecules reacting 

Select the set of actions (from a fixed set of actions) that 

will lead to victory! Take that Lee Sedol!

Selecting the set of transformations (from a fixed set of 

transformations) that will help us find new drugs to cure 

diseases! Take that cancer!

Neural Nets

Goal
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Results & Discussion
- Comparison with related methods

- Preference of chemical experts

- Limitations

Lipai (Jim) Xu
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Comparison with related methods

Lipai (Jim) Xu

    Method

Time lim

3N-MCTS nBFS hBFS

5 sec 80% 40% 0%

60 sec 92% 71% 4%

1200 sec ~93% ~80% ~75%
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Preference of Chemical Experts

Lipai (Jim) Xu
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Limitations

● Not enough train data for some tasks
● Stereochemistry 
● Not totally admitted by the industry

Lipai (Jim) Xu
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Thank You

Lipai (Jim) Xu
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Synthesis Planning with MCTS

Shuja Khalid

  Alpha Go Zero    3N-MCTS

Algorithm

       
       Neural Nets

Objective

Selection Expand and
evaluate

Backup

Selection Expansion

RolloutUpdate

(p, v) = f(s) q = froll(s) , t = fexp(s) , p = fscope(s, r)  
p: probability of selecting each move from a list of action probabilities
v: scalar evaluation that estimates the probability of the current player 
winning from position s

q: scalar evaluation of node ; r: reactions between molecules
 t: possible transformations ;  p: probability of the molecules reacting 

where, 
    U(s,a) ∝ P(s,a)/(1+N(s,a))
    Q(s,a): action-value ; N(s,a): count visit ; P(s,a): prior probability

Maximise an upper confidence bound on Q(s,a) + U(s,a) Maximise the Q function which includes an adjustable 
objective W(bi)
where, 
    N(s,a): count visit ; 
    zi: reward received during rollout


