Learning To Plan Chemical Syntheses

Yunhao (Jack) Ji Yizhan (Ethan) Jiang Shuja (Shuja) Khalid Lipai (Jim) Xu

Presenter - Yunhao (Jack) Ji

Introduction

• Retrosynthesis

Motivation and Related Work

Manual constructing a valid tree can be hard

Computer Science UNIVERSITY OF TORONTO Introduction Neural Networks MCTS Results Presenter - Yunhao (Jack) Ji

Motivation and Related Work

- Computer-assisted synthesis planning (CASP) can automatically extract the transformations
 - The generated tree has short depth but large branching factors and hard to define heuristics.

An illustration of an example search tree to a synthesis planning

Presenter - Yunhao (Jack) Ji

Neural Networks

Learn Chemical Reaction Rules

12.4 million reactions from Reaxys database as dataset

Reaxys®

Presenter - Yizhan (Ethan) Jiang

Neural Networks for Action Selection

Actions in AlphaGo

Actions in Chemical Synthesis

Neural Networks for Action Selection (1/2)

Expansion Policy Neural Network

• Find K most possible molecular transformations

Neural Networks for Action Selection (2/2)

In-Scope Filter Neural Network

• Filter out infeasible transformations

Neural Network for Rollout

Rollout Policy Neural Network

- Select 10 most possible transformations
- Only three layers for creating fast rollout policy

Learning To Search

Computer Science UNIVERSITY OF TORONTO

Computer Science UNIVERSITY OF TORONTO

Learning To Search

Computer Science UNIVERSITY OF TORONTO

CSC 2547

Computer Science UNIVERSITY OF TORONTO

CSC 2547

Learning To Search

Results & Discussion

- Comparison with related methods
 - Preference of chemical experts
 - Limitations

Lipai (Jim) Xu

CSC 2547

Learning To Search

Preference of Chemical Experts

Limitations

- Not enough train data for some tasks
- Stereochemistry
- Not totally admitted by the industry

References

Background image: http://turnoff.us/geek/binary-tree (with changes)

Alpha Go content:

http://discovery.ucl.ac.uk/10045895/1/agz_unformatted_nature.pdf

Learning to Plan Chemical Synthesis content: https://arxiv.org/pdf/1708.04202.pdf

Presenter -

CSC 2547

Learning To Search

