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Introduction

e Retrosynthesis

a) Chemical Representation of the Synthesis Plan
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Motivation and Related Work

e Manual constructing a valid tree can be hard

a) Chemical Representation of the Synthesis Plan
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Motivation and Related Work

e Computer-assisted synthesis planning (CASP) can automatically extract the
transformations

e The generated tree has short depth but large branching factors and hard to
define heuristics.
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Neural Networks

Learn Chemical Reaction Rules 12.4 million reactions from
Reaxys database as dataset
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Neural Networks for Action Selection

Actions in AlphaGo
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Neural Networks for Action Selection (1/2)

e Expansion Policy Neural Network
o Find K most possible molecular transformations
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Neural Networks for Action Selection (2/2)

e |n-Scope Filter Neural Network
o Filter out infeasible transformations
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Neural Network for Rollout

e Rollout Policy Neural Network
o Select 10 most possible transformations
o Only three layers for creating fast rollout policy
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Synthesis Planning with 3N-MCTS

»  Selection
Expansion
* The 3 Neural
Networks covered
Evaluate on previous slides Next!
Backup
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Synthesis Planning with 3N-MCTS

Selection
Target Molecule
Expansion
V ? ?
Q(s¢,a) N(s¢—1,a¢-1)
Evaluate a; = arg max | ——2—= + cP(ss,a -
¢ aégA(st) N(st,a) ( . ) 1"‘]\/(81‘,&)
* N (s, a) : Visit count of state-action pair
P (s. a) : Prior probability of visiting state-action pair
Backup Q (s, a): Scalar value of state-action pair
¢ : Exploration constant
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Synthesis Planning with 3N-MCTS

»  Selection
Target Molecule
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Evaluate i
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Expansion Policy: keep kbest, for each Rxn: keep likely
Prioritizes apply transforms In-Scope reactions (Rxn)
Transformations (TF) to target Filter




Synthesis Planning with 3N-MCTS

»  Selection
Target Molecule
v A
Expansion
B C

Evaluate
- - Check if state is terminal

-  Terminal — evaluate with the reward function

- Non-terminal — begin rollout/evaluation step

Backup - Recursively sample actions from rollout policy until
termination condition is met
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Synthesis Planning with 3N-MCTS

> Selection 50
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N (s, a) : Visit count of state-action pair
Backup W (b;) : Custom objective function
Z; :Reward € [-1,0,1]
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Synthesis Planning with MCTS

AlphaGo Zero 3N-MCTS
. Expand and : .
Selection eF\)/aIuate Selection Expansion
Algorithm \ / 1 7
Backup ' Update = Rollout
e
~_J
(p. V) =(s) a="fyls) t=F,(s), p=F, (sr
: scal luation of nod
Neural NetS p: probability of selecting each move from a list of action probabilities ? ;Ziﬁg:;’isaf:nomgfefmes
v: scalar evaluation that estimates the probability of the current player t: possible transformations
winning from position s p: probability of the molecules reacting
G | Select the set of actions (from a fixed set of actions) that Selecting the set of transformations (from a fixed set of
oa
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transformations) that will help us find new drugs to cure
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Results & Discussion

- Comparison with related methods
- Preference of chemical experts

- Limitations
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. y Method ' 3N-MCTS | nBFS hBFS
Comparison with related methods
Time lim
Time Limits
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Preference of Chemical Experts

a) 3N-MCTS vs literature routes b) 3N-MCTS vs heuristic BFS routes
MCTS preference ratio MCTS preference ratio
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Limitations

e Not enough train data for some tasks
e Stereochemistry
e Not totally admitted by the industry

= o ° o e CSC 2547

:;; COIDPUECI‘ SCiCI’lCC Introduction Neural Networks MCTS Results
X UNIVERSITY OF TORONTO

Presenter -  Lipai (Jim) Xu Learning To Search



Thank You
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Synthesis Planning with MCTS

Alpha Go Zero 3N-MCTS
. Expand and : .
Selection er\)/aluate Selection Expansion
Algorithm »\ / f ¥
Backup , Update [~ Rollout
=
_J ) p-
(p, V) = f(s) a= 1:roll(s) ’ t= feXp(S)
NeU ral NetS p: probability of selecting each move from a list of action probabilities > . f . .
v: scalar evaluation that estimates the probability of the current player q: scalgr evaluation o r.10de_, r.. reactloq§ between molecules .
winning from position s t: possible transformations ; p: probability of the molecules reacting
Maximise an upper confidence bound on Q(s,a) + U(s,a) Maximise the Q function which includes an adjustable
Obiective where, objective W(b) e O ~ ' _
) U(s.a) o P(s,a)/(1+N(s,a)) where, s =53 2111(8’ k)
Q(s,a): action-value ; N(s,a): count visit ; P(s,a): prior probability N(s,a): count visit ; b
z;: reward received during rollout
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