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Outline

● Motivation
● Optimistic Exploration and Bandits

● Monte Carlo Tree Search (MCTS)

● Learning to Search in MCTS
○ Thinking Fast and Slow with Deep Learning and Tree Search (Anthony, et al. 2017) [Expert 

Iteration]

○ Mastering the Game of Go without Human Knowledge (Silver, et al. 2017)  [AlphaGo Zero]

○ Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm 
(Silver, et al. 2017) [AlphaZero]
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Motivation



Motivating Problem: Two Player Turn-Based Games
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Game Tree Search

● Enumerate all possible moves 

to minimize your opponent’s 
best possible score (minimax 

algorithm).

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html

● Exact optimal solution can be 

found with enough resources.

● Useful for finite-length 
sequential decision-making 
task where the number of 
actions is reasonably small.
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Why this doesn’t scale

Go:  ~10170 legal positions
Chess: over 1040  legal positions

No hope of solving this exactly through 
brute force!

Exponential growth of the game tree! 
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b: branching factor (number of actions)
d: depth



Ways to speed it up

Depth-Limited Search: Only 

look at the tree up to a 
certain depth and use an 

evaluation function to 
estimate the value.

Action Pruning: Only look at 

a subset of the available 
actions from any state.
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Application: Stockfish

● One of the best chess engines
● Estimates the value of a 

position using heuristics: 
○ Material difference
○ Piece activity 

○ Pawn structure 

● Uses aggressive action 
pruning techniques
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How to efficiently search without 
relying on expert knowledge?

● Exploration: Learn the values of actions we are 
uncertain about

● Exploitation: Focus the search on the most 
promising parts of the tree
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Multi-Armed Bandits

● k slot machines payout according to their own 
distributions.

● Goal: maximize total expected reward earned 

over time by choosing which arm to pull.

● Need to balance exploration (learning the 

effects of different actions) vs exploitation

(using the best known action). 
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● Information State Search: Exploration provides information which can 
increase expected reward in future iterations.

● Optimal solution can be found by solving an infinite-state Markov Decision 

Process over information states. http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/XX.pdf

● Computing this solution is often intractable. Heuristics are needed! 

Multi-Armed Bandits Solutions
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Upper Confidence 
Bound Algorithm

● Record the mean reward for 
each arm.

● Construct a confidence 

interval for each expected 

reward

● Optimistically select the arm 

with the highest upper 

confidence bound.
○ Increase the required 

confidence over time.

Finite time analysis of the multiarmed bandit problem (P. Auer, et al. 2002)

Original Image
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Monte Carlo Tree Search



Upper Confidence Bounds applied to Trees (UCT)

Treat selecting a node to traverse in our search as a bandit problem.

Bandit Based Monte-Carlo Planning (L. Kocsis and C. Szepesvári)

Original Image (adapted) 14



Monte Carlo Tree Search (MCTS)

● Term coined in 2006 (Couloum et al.) but idea goes back to at least 
1987

● Maintain a tree of game states you’ve seen
● Record the average reward and number of visits to each state
● Key idea: instead of a hand-crafted heuristic to estimate the value 

of a game state, let’s just repeatedly randomly simulate a game 
trajectory from that state
○ combined with UCB gives us a good approximation of how 

good a game state is
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An Iteration of MCTS

A survey of Monte Carlo Tree Search Methods. (C. Browne, et al. 2012)
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Selection
Tree Policy: choose the child that maximizes the UCB:

N = number of times the parent node has been visited

ni = number of times the child has been visited

rt = reward from t-th visit to the child

c = exploration hyperparameter
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Expansion / Simulation / Backpropagation

What to do when you reach a node without data? 

● Always expand children nodes that are unvisited by adding it to the tree.

● Estimate the value of the new node by randomly simulating until the end of the 

game (roll-out).

● Backpropagate the value to the ancestors of the node. (Unrelated to 

backpropagation of gradients in neural networks!)
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Example: MCTS Tree

A survey of Monte Carlo Tree Search Methods. (C. Browne, et al. 2012)
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Using MCTS in Practice 

● Works well without expert knowledge

● MCTS is anytime: accuracy improves with more 
computation

● Easy to parallelize
○ Ex. do rollouts for the same node in parallel to get a 

better estimate
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Learning to Search in MCTS



Limitations
● Often a random rollout is not a 

great estimator for the value of 

a state
○ Learn to estimate the value of 

states 

○ Learn a smarter policy for 

rollouts

22

Original Content: Mismatch between true value and random Monte Carlo Estimation 



Limitations

● UCT expands every child of a state before going deeper
○ Learn which states are promising enough to expand

● UCT does not use prior knowledge at test time
○ Remember the results of simulations during training to speed up decision 

making at test time
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Modern Approaches

These three papers (Expert Iteration, AlphaGo Zero, AlphaZero) are very related 
and came out in 2017.

We will point out any important differences!
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Expert Iteration, AlphaGo Zero, AlphaZero
Main Idea

Original image.
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What they learn
● Policy Network -

○ Probability distribution over the moves

○ Used to focus the search towards good moves

○ Can replace the random policy during rollouts

● Value Network -

○ Predicts the value of any given game state

○ An alternative to rollout simulation in MCTS

● Data is collected from self-play games
● Policy and Value networks are either trained after each iteration (AlphaGo 

Zero, Expert Iteration) or continuously (AlphaZero)
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Learning the Policy Network

● Run MCTS for n iterations on a state s
● Define the target policy:  

● Why not train the policy to pick just the optimal (MCTS) action instead?
○ Some states have several good actions.
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Learning the Value Network

● Gather state / value pairs either by rolling out directly with the policy 
network (ExIt) or via MCTS rollouts (AlphaZero).

● Treat the target value as the probability of winning
○ Cross entropy loss (ExIt) 

● Or as some arbitrary reward (win = +1, tie = 0, loss = -1)
○ Squared error loss (AlphaGo Zero, AlphaZero)
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Improving MCTS with the Learned Policy

UCB:

ExIt:

(a bonus for exploration and for choosing likely optimal actions)

Note: in ExIt unexplored actions are always taken. 29



Improving MCTS with the Learned Policy

UCB:

AlphaZero:
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(Mask out bad states from exploration)



Improving MCTS with the Learned Value

● Evaluate positions with the value network instead of rollouts.

● Some variants (ExIt, AlphaGo) use a combination of a rollout (using the 

policy network) and the value network.
○ Rollouts are usually more expensive than value network computations.
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Performance

https://www.theverge.com/2017/5/27/157040
88/alphago-ke-jie-game-3-result-retires-future

https://deepmind.com/blog/article/alph
azero-shedding-new-light-grand-
games-chess-shogi-and-go
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Related Work

● AlphaGo Fan
○ Train a neural network to imitate professional moves

○ Use REINFORCE during self play to improve the policies

○ Train a value network to predict the winner of these self play games
○ At test time, combine these networks with MCTS

● AlphaGo Lee
○ Train the value network with the AlphaGo MCTS + NN games rather than just the NN 

games

○ Iterate several times

● AlphaGo Master
○ Uses the AlphaGo Zero algorithm but is pre trained to imitate a professional.
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Limitations/Future Work

● AlphaGo Zero and AlphaZero required an ungodly amount of computation for 
training (over 5000 TPUs, $25 million in hardware for AlphaGo Zero) 

● Requires a fast simulator / true model of the environment.

● Doesn’t apply to (multiplayer) games with simultaneous moves / imperfect 
information

● Heuristic is restricted to a specific class of functions: those structured like 
UCT
○ MCTS-nets: use a neural net to learn an arbitrary function (neural nets are universal function 

approximators)
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Thanks for listening!

35https://en.chessbase.com/post/the-future-is-here-alphazero-learns-chess


