
Modern Monte Carlo Tree Search

Andrew Li, John Chen, Keiran Paster

1

Outline

● Motivation
● Optimistic Exploration and Bandits

● Monte Carlo Tree Search (MCTS)

● Learning to Search in MCTS
○ Thinking Fast and Slow with Deep Learning and Tree Search (Anthony, et al. 2017) [Expert

Iteration]

○ Mastering the Game of Go without Human Knowledge (Silver, et al. 2017) [AlphaGo Zero]

○ Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
(Silver, et al. 2017) [AlphaZero]

2

3

Motivation

Motivating Problem: Two Player Turn-Based Games

4

Game Tree Search

● Enumerate all possible moves

to minimize your opponent’s
best possible score (minimax

algorithm).

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html

● Exact optimal solution can be

found with enough resources.

● Useful for finite-length
sequential decision-making
task where the number of
actions is reasonably small.

5

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html

Why this doesn’t scale

Go: ~10170 legal positions
Chess: over 1040 legal positions

No hope of solving this exactly through
brute force!

Exponential growth of the game tree!

6

b: branching factor (number of actions)
d: depth

Ways to speed it up

Depth-Limited Search: Only

look at the tree up to a
certain depth and use an

evaluation function to
estimate the value.

Action Pruning: Only look at

a subset of the available
actions from any state.

7

Application: Stockfish

● One of the best chess engines
● Estimates the value of a

position using heuristics:
○ Material difference
○ Piece activity

○ Pawn structure

● Uses aggressive action
pruning techniques

8

How to efficiently search without
relying on expert knowledge?

● Exploration: Learn the values of actions we are
uncertain about

● Exploitation: Focus the search on the most
promising parts of the tree

9

Multi-Armed Bandits

● k slot machines payout according to their own
distributions.

● Goal: maximize total expected reward earned

over time by choosing which arm to pull.

● Need to balance exploration (learning the

effects of different actions) vs exploitation

(using the best known action).

10

● Information State Search: Exploration provides information which can
increase expected reward in future iterations.

● Optimal solution can be found by solving an infinite-state Markov Decision

Process over information states. http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/XX.pdf

● Computing this solution is often intractable. Heuristics are needed!

Multi-Armed Bandits Solutions

11

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/XX.pdf

Upper Confidence
Bound Algorithm

● Record the mean reward for
each arm.

● Construct a confidence

interval for each expected

reward

● Optimistically select the arm

with the highest upper

confidence bound.
○ Increase the required

confidence over time.

Finite time analysis of the multiarmed bandit problem (P. Auer, et al. 2002)

Original Image

12

13

Monte Carlo Tree Search

Upper Confidence Bounds applied to Trees (UCT)

Treat selecting a node to traverse in our search as a bandit problem.

Bandit Based Monte-Carlo Planning (L. Kocsis and C. Szepesvári)

Original Image (adapted) 14

Monte Carlo Tree Search (MCTS)

● Term coined in 2006 (Couloum et al.) but idea goes back to at least
1987

● Maintain a tree of game states you’ve seen
● Record the average reward and number of visits to each state
● Key idea: instead of a hand-crafted heuristic to estimate the value

of a game state, let’s just repeatedly randomly simulate a game
trajectory from that state
○ combined with UCB gives us a good approximation of how

good a game state is

15

An Iteration of MCTS

A survey of Monte Carlo Tree Search Methods. (C. Browne, et al. 2012)

16

Selection
Tree Policy: choose the child that maximizes the UCB:

N = number of times the parent node has been visited

ni = number of times the child has been visited

rt = reward from t-th visit to the child

c = exploration hyperparameter

17

Expansion / Simulation / Backpropagation

What to do when you reach a node without data?

● Always expand children nodes that are unvisited by adding it to the tree.

● Estimate the value of the new node by randomly simulating until the end of the

game (roll-out).

● Backpropagate the value to the ancestors of the node. (Unrelated to

backpropagation of gradients in neural networks!)

18

Example: MCTS Tree

A survey of Monte Carlo Tree Search Methods. (C. Browne, et al. 2012)
19

Using MCTS in Practice

● Works well without expert knowledge

● MCTS is anytime: accuracy improves with more
computation

● Easy to parallelize
○ Ex. do rollouts for the same node in parallel to get a

better estimate

20

21

Learning to Search in MCTS

Limitations
● Often a random rollout is not a

great estimator for the value of

a state
○ Learn to estimate the value of

states

○ Learn a smarter policy for

rollouts

22

Original Content: Mismatch between true value and random Monte Carlo Estimation

Limitations

● UCT expands every child of a state before going deeper
○ Learn which states are promising enough to expand

● UCT does not use prior knowledge at test time
○ Remember the results of simulations during training to speed up decision

making at test time

23

Modern Approaches

These three papers (Expert Iteration, AlphaGo Zero, AlphaZero) are very related
and came out in 2017.

We will point out any important differences!

24

Expert Iteration, AlphaGo Zero, AlphaZero
Main Idea

Original image.

25

What they learn
● Policy Network -

○ Probability distribution over the moves

○ Used to focus the search towards good moves

○ Can replace the random policy during rollouts

● Value Network -

○ Predicts the value of any given game state

○ An alternative to rollout simulation in MCTS

● Data is collected from self-play games
● Policy and Value networks are either trained after each iteration (AlphaGo

Zero, Expert Iteration) or continuously (AlphaZero)

26

Learning the Policy Network

● Run MCTS for n iterations on a state s
● Define the target policy:

● Why not train the policy to pick just the optimal (MCTS) action instead?
○ Some states have several good actions.

27

Learning the Value Network

● Gather state / value pairs either by rolling out directly with the policy
network (ExIt) or via MCTS rollouts (AlphaZero).

● Treat the target value as the probability of winning
○ Cross entropy loss (ExIt)

● Or as some arbitrary reward (win = +1, tie = 0, loss = -1)
○ Squared error loss (AlphaGo Zero, AlphaZero)

28

Improving MCTS with the Learned Policy

UCB:

ExIt:

(a bonus for exploration and for choosing likely optimal actions)

Note: in ExIt unexplored actions are always taken. 29

Improving MCTS with the Learned Policy

UCB:

AlphaZero:

30

(Mask out bad states from exploration)

Improving MCTS with the Learned Value

● Evaluate positions with the value network instead of rollouts.

● Some variants (ExIt, AlphaGo) use a combination of a rollout (using the

policy network) and the value network.
○ Rollouts are usually more expensive than value network computations.

31

Performance

https://www.theverge.com/2017/5/27/157040
88/alphago-ke-jie-game-3-result-retires-future

https://deepmind.com/blog/article/alph
azero-shedding-new-light-grand-
games-chess-shogi-and-go

32

Related Work

● AlphaGo Fan
○ Train a neural network to imitate professional moves

○ Use REINFORCE during self play to improve the policies

○ Train a value network to predict the winner of these self play games
○ At test time, combine these networks with MCTS

● AlphaGo Lee
○ Train the value network with the AlphaGo MCTS + NN games rather than just the NN

games

○ Iterate several times

● AlphaGo Master
○ Uses the AlphaGo Zero algorithm but is pre trained to imitate a professional.

33

Limitations/Future Work

● AlphaGo Zero and AlphaZero required an ungodly amount of computation for
training (over 5000 TPUs, $25 million in hardware for AlphaGo Zero)

● Requires a fast simulator / true model of the environment.

● Doesn’t apply to (multiplayer) games with simultaneous moves / imperfect
information

● Heuristic is restricted to a specific class of functions: those structured like
UCT
○ MCTS-nets: use a neural net to learn an arbitrary function (neural nets are universal function

approximators)

34

Thanks for listening!

35https://en.chessbase.com/post/the-future-is-here-alphazero-learns-chess

