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 Motivation of MCTSnet
● MCTS is non-differentiable, which is difficult to optimize

● Keep algorithmic skeleton of MCTS, identify subcomponents, parametrize and 
optimize them
○ The functions of components are given by how they are reused across the model

● Train end-to-end to optimize chosen loss function
○ Hope to get better results with fewer simulations than MCTS



Difference Between MCTS and MCTSnet

MCTS MCTSnet

Statistics Q estimation state embedding h

Simulation policy UCT formula policy network π 

Leaf value estimation Rollout/Value network embedding network ε 

Backup phase Monte-Carlo return back-up network β 

Action selection Most visited node readout network 𝜌 

MCTSnet parametrizes each of the subcomponent using neural networks



MCTSNet: A Single Simulation (Tree-Policy Phase)

Tree after some sims

Root Embedding
Simulation Policy Network
Input : State embedding
Output : Sampled action



MCTSNet: A Single Simulation (Tree-Policy Phase)

Tree after some sims

Root Embedding

Using true model for each transition



MCTSNet: A Single Simulation (Tree-Policy Phase)

Embedding Network

Leaf node
(hasn’t been explored yet)

Input : Game frames (raw state)
Output : State Embedding



MCTSNet: A Single Simulation (Backup Phase)

Backup Network

Input : Previous state embedding
  State embedding of child-node
  true reward
  action

Output : Updated state embedding 



MCTSNet: A Single Simulation (Backup Phase)



Multiple Simulations/Search

sim 1 sim 2 sim 3 sim K...

MCTSnet

X

Net output

Loss

Readout 
Network

Input : state embedding of root
Output : Action distribution



Recap of MCTSnet Modules

X

action probability

action probability

Simulation 
policy network

Readout 
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Backup 
network

Embedding 
network

stands for 
embedding h at level 
s of the tree in the t 

th simulation



Difference Between MCTS and MCTSnet

MCTS MCTSnet

Statistics Q estimation state embedding h

Simulation policy UCT formula policy network π 

Leaf value estimation Rollout/Value network embedding network ε 

Backup phase Monte-Carlo return back-up network β 

Action selection Most visited node readout network 𝜌 



Problem Setting
Goal : Push the box onto the red targets but not pull (non-ergodic)

Input : x - game frames

Target : a* - “oracle” action (obtained from running a large scale MCTS)



Loss for a single step (M simulations)
Cross-entropy loss between the readout network’s output and ground truth action:

Gradient of the loss splits into differentiable and non-differentiable parts.

A set of all actions 
taken in the simulation

Standard backprop REINFORCE

pseudo-reward

Raw game frames



Credit Assignment Technique



Results: Contribution of Tree Search



Model Free vs Model Based

Model Based Model Free

Transition Function T(s,a) = s’ T(s,a) = s

Reward Function R(s,a) = r R(s,a) = 0



● Aim : To test whether tree-search contributes to the final results (e.g., more 
accurate actions in the true environment), not just the neural network’s credits.

● Copy Model: In the planning (simulation) loop, the network sees exactly the 
same state after taking each action and transition, which is in order to test 
whether solely using the statistics of the current state can give accurate actions

● Conclusion: Tree search and Neural Nets help each other

Model Free vs Model Based



Results: Scalability
● Increasing # of 

simulations helps in 
terms of success ratio

● Same number of 
simulations is applied in 
both training and 
testing



Conclusion
● Learning to search, trained on a specific problem, improves performance 

compared to classical search techniques

● Planning-like behavior: performance increases with amount of time

● Credit assignment technique helps train anytime algorithm



Critical Questions
Paper:

● Fair comparison between MCTSNets trained with different number of simulations?
● Ablative analysis is absent(how each component contributes to the final result)?
● Scalability on more complex problems?
● Comparison with other classical DRL algorithms?
● Comparison on computational cost?
● Reproduction?

Method:

● Why using the results of MCTS as labels?
● If MCTS already gives the optimal results, then why bother to train a bunch of neural nets?
● Can a MCTSNet trained on one problem be transferred to other tasks (overfitting)?



Critical Questions

https://github.com/faameunier/MCTSnet/blob/
master/RL_Manuscript.pdf

https://github.com/faameunier/MCTSnet/blob/master/RL_Manuscript.pdf
https://github.com/faameunier/MCTSnet/blob/master/RL_Manuscript.pdf


Related Works: Learning to Search

● The learning-to-search framework (Chang et al., 2015) learns an evaluation 
function that is effective in the context of beam search

● The TD (leaf) algorithm (Baxter et al., 1998; Schaeffer et al., 2001) applies 
reinforcement learning to find an evaluation function that combines with 
minimax search to produce an accurate root evaluation

● In all cases, the evaluation function is scalar valued



Related Works: Meta Reasoning

● Kocsis et al. (2005) applies black-box optimization to learn the 
meta-parameters controlling an alpha-beta search
○ They do not learn fine-grained control over the search decision

● Pascanu et al. (2017) investigates learning-to-plan using neural networks
○ Their system uses an unstructured memory which makes complex branching very unlikely



Related Works: Search with Neural Nets

● The I2A architecture (Weber et al., 2017) aggregates the results of several 
simulations (from fixed policy) into its neural network computation
○ MCTSNets introduce a tree-structured memory and tree-expansion strategy

● Similar to I2A, the predictron architecture (Silver et al., 2017b) aggregates 
over multiple simulations
○ Simulations are rolled out in an implicit transition model
○ MCTSNets make concrete steps in the explicit (simulated) environment
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Dynamic Computation Graph


