
Learning to Search with
MCTSnets

Minghan Li
Ignavier Ng

 Motivation of MCTSnet
● MCTS is non-differentiable, which is difficult to optimize

● Keep algorithmic skeleton of MCTS, identify subcomponents, parametrize and
optimize them
○ The functions of components are given by how they are reused across the model

● Train end-to-end to optimize chosen loss function
○ Hope to get better results with fewer simulations than MCTS

Difference Between MCTS and MCTSnet

MCTS MCTSnet

Statistics Q estimation state embedding h

Simulation policy UCT formula policy network π

Leaf value estimation Rollout/Value network embedding network ε

Backup phase Monte-Carlo return back-up network β

Action selection Most visited node readout network 𝜌

MCTSnet parametrizes each of the subcomponent using neural networks

MCTSNet: A Single Simulation (Tree-Policy Phase)

Tree after some sims

Root Embedding
Simulation Policy Network
Input : State embedding
Output : Sampled action

MCTSNet: A Single Simulation (Tree-Policy Phase)

Tree after some sims

Root Embedding

Using true model for each transition

MCTSNet: A Single Simulation (Tree-Policy Phase)

Embedding Network

Leaf node
(hasn’t been explored yet)

Input : Game frames (raw state)
Output : State Embedding

MCTSNet: A Single Simulation (Backup Phase)

Backup Network

Input : Previous state embedding
 State embedding of child-node
 true reward
 action

Output : Updated state embedding

MCTSNet: A Single Simulation (Backup Phase)

Multiple Simulations/Search

sim 1 sim 2 sim 3 sim K...

MCTSnet

X

Net output

Loss

Readout
Network

Input : state embedding of root
Output : Action distribution

Recap of MCTSnet Modules

X

action probability

action probability

Simulation
policy network

Readout
network

Backup
network

Embedding
network

stands for
embedding h at level
s of the tree in the t

th simulation

Difference Between MCTS and MCTSnet

MCTS MCTSnet

Statistics Q estimation state embedding h

Simulation policy UCT formula policy network π

Leaf value estimation Rollout/Value network embedding network ε

Backup phase Monte-Carlo return back-up network β

Action selection Most visited node readout network 𝜌

Problem Setting
Goal : Push the box onto the red targets but not pull (non-ergodic)

Input : x - game frames

Target : a* - “oracle” action (obtained from running a large scale MCTS)

Loss for a single step (M simulations)
Cross-entropy loss between the readout network’s output and ground truth action:

Gradient of the loss splits into differentiable and non-differentiable parts.

A set of all actions
taken in the simulation

Standard backprop REINFORCE

pseudo-reward

Raw game frames

Credit Assignment Technique

Results: Contribution of Tree Search

Model Free vs Model Based

Model Based Model Free

Transition Function T(s,a) = s’ T(s,a) = s

Reward Function R(s,a) = r R(s,a) = 0

● Aim : To test whether tree-search contributes to the final results (e.g., more
accurate actions in the true environment), not just the neural network’s credits.

● Copy Model: In the planning (simulation) loop, the network sees exactly the
same state after taking each action and transition, which is in order to test
whether solely using the statistics of the current state can give accurate actions

● Conclusion: Tree search and Neural Nets help each other

Model Free vs Model Based

Results: Scalability
● Increasing # of

simulations helps in
terms of success ratio

● Same number of
simulations is applied in
both training and
testing

Conclusion
● Learning to search, trained on a specific problem, improves performance

compared to classical search techniques

● Planning-like behavior: performance increases with amount of time

● Credit assignment technique helps train anytime algorithm

Critical Questions
Paper:

● Fair comparison between MCTSNets trained with different number of simulations?
● Ablative analysis is absent(how each component contributes to the final result)?
● Scalability on more complex problems?
● Comparison with other classical DRL algorithms?
● Comparison on computational cost?
● Reproduction?

Method:

● Why using the results of MCTS as labels?
● If MCTS already gives the optimal results, then why bother to train a bunch of neural nets?
● Can a MCTSNet trained on one problem be transferred to other tasks (overfitting)?

Critical Questions

https://github.com/faameunier/MCTSnet/blob/
master/RL_Manuscript.pdf

https://github.com/faameunier/MCTSnet/blob/master/RL_Manuscript.pdf
https://github.com/faameunier/MCTSnet/blob/master/RL_Manuscript.pdf

Related Works: Learning to Search

● The learning-to-search framework (Chang et al., 2015) learns an evaluation
function that is effective in the context of beam search

● The TD (leaf) algorithm (Baxter et al., 1998; Schaeffer et al., 2001) applies
reinforcement learning to find an evaluation function that combines with
minimax search to produce an accurate root evaluation

● In all cases, the evaluation function is scalar valued

Related Works: Meta Reasoning

● Kocsis et al. (2005) applies black-box optimization to learn the
meta-parameters controlling an alpha-beta search
○ They do not learn fine-grained control over the search decision

● Pascanu et al. (2017) investigates learning-to-plan using neural networks
○ Their system uses an unstructured memory which makes complex branching very unlikely

Related Works: Search with Neural Nets

● The I2A architecture (Weber et al., 2017) aggregates the results of several
simulations (from fixed policy) into its neural network computation
○ MCTSNets introduce a tree-structured memory and tree-expansion strategy

● Similar to I2A, the predictron architecture (Silver et al., 2017b) aggregates
over multiple simulations
○ Simulations are rolled out in an implicit transition model
○ MCTSNets make concrete steps in the explicit (simulated) environment

Acknowledgement & Links
● https://github.com/keras-rl/keras-rl/issues/216
● https://github.com/faameunier/MCTSnet
● https://github.com/Chicoryn/dream-go/issues/32
● https://vimeo.com/312294797
● https://github.com/faameunier/MCTSnet/blob/master/RL_Manuscript.pdf

https://github.com/keras-rl/keras-rl/issues/216
https://github.com/faameunier/MCTSnet
https://github.com/Chicoryn/dream-go/issues/32
https://vimeo.com/312294797
https://github.com/faameunier/MCTSnet/blob/master/RL_Manuscript.pdf

References
Baxter, J., Tridgell, A., and Weaver, L. Knightcap: A chess program that learns by combining td with

gametree search. In Proceedings of the 15th International Conference on Machine Learning, 1998.

Chang, K.-W., Krishnamurthy, A., Agarwal, A., Daume, H., and Langford, J. Learning to search better
than your teacher. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15),
pp. 2058–2066, 2015.

Kocsis, L., Szepesv´ari, C., and Winands, M. H. RSPSA: enhanced parameter optimization in games. In
Advances in Computer Games, pp. 39–56. Springer, 2005.

Pascanu, R., Li, Y., Vinyals, O., Heess, N., Buesing, L., Racaniere, S., Reichert, D., Weber, T., Wierstra,
D., and Battaglia, P. Learning model-based planning from scratch. arXiv preprint arXiv:1707.06170,
2017.

References
Schaeffer, J., Hlynka, M., and Jussila, V. Temporal difference learning applied to a high-performance

game-playing program. In Proceedings of the 17th international joint conference on Artificial
intelligence-Volume 1, pp. 529–534. Morgan Kaufmann Publishers Inc., 2001.

Silver, D., van Hasselt, H., Hessel, M., Schaul, T., Guez, A., Harley, T., Dulac-Arnold, G., Reichert, D.,
Rabinowitz, N., Barreto, A., et al. The predictron: End-to-end learning and planning. In ICML, 2017b.

Weber, T., Racani`ere, S., Reichert, D. P., Buesing, L., Guez, A., Rezende, D. J., Badia, A. P., Vinyals, O.,
Heess, N., Li, Y., et al. Imagination-augmented agents for deep reinforcement learning. arXiv preprint
arXiv:1707.06203, 2017.

Q&A

Appendix

Dynamic Computation Graph

