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Probabilistic Planning via Sequential Monte Carlo
Model-based RL method

Control as Inference heuristic

Sequential Monte Carlo action sampling



Sequential Monte Carlo Tutorial
A method for sampling from sequential distributions.



“Perfect” Monte Carlo (MC)
Integral intractable:

But can sample easily. -> Approximate p(x) with N samples from p(x):

Empirical 
Measure

MC 
Estimate

https://www.stats.ox.ac.uk/~doucet/doucet_defreitas_gordon_smcbookintro.pdf [1.3.1]

https://www.stats.ox.ac.uk/~doucet/doucet_defreitas_gordon_smcbookintro.pdf


“Perfect” Monte Carlo (MC)

p(x)



Importance Sampling (IS)
Integral intractable and can’t sample easily. 

But can sample from q(x). -> Approximate p(x) with N samples from q(x).

https://www.stats.ox.ac.uk/~doucet/doucet_defreitas_gordon_smcbookintro.pdf [1.3.2]

https://www.stats.ox.ac.uk/~doucet/doucet_defreitas_gordon_smcbookintro.pdf


Importance Sampling

p(x)

q(x)



Sequential Monte Carlo (SMC)
Want to sample sequence:

From:

StepInitial 
Distribution



Sequential Importance Sampling (SIS)
Sample from a proposal distribution:

StepInitial 
Distribution

Time
x



t=1 Proposal Particles

Standard Importance 
Sampling

Time 1 Particles



Time 1 Particlest-1

t

Sequence or “branch”

Time 2 Proposal 
Particles



Time 1 Particles

Step Importance Ratio

Update Importance 
Weights

t-1
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Time 2 Particles

Time 2 Proposal 
Particles



Time 1 Particles

Step Importance Ratio

Update Importance 
Weights

t-1

t

Time 2 Particles

Time 2 Proposal 
Particles

But weights could 
become very small



t-1

t

Replacement Step:
● Discontinue low weight branches
● Refocus particles on high weight 

branches

SIS with Replacement



SMC: SIS with Replacement
Only high probability branches 
survive.

Still representative of the 
overall distribution.



Model-based RL

Learns a model of the environment and uses it for RL

● Model Predictive Planning (f.e. PETS [Chua et al. 2018])
○ Simulate actions into the future
○ Pick ones that gave good value



Control as Inference
Proposes a heuristic for selecting actions.

Current belief of the agent:

Action A: Lose 1 dollar on average (higher chance to be “optimal”) 

Action B: Lose 2 dollars on average 

Control as inference:

Choose Action A more often than B.

But sometimes still choose B.



Control as Inference

To define this formally: Optimality Variable

Suppose an “optimal” future. Given that agent will lose as little 
money as possible,

Sample actions according to how 
likely they would have led to this 
“optimality”.

which action did I likely take?



What is probability of “optimal”?
Heuristic: Exponential 

Lower reward 
-> 
Exponentially less likely of being ‘optimal’ 
->
Exponentially less likely to be sampled

Reward (Always negative)



MDP Setting
MDP:

Optimality at every point in time.

Choose action proportional to 
chance of optimality over time.



But inference is hard =(
Can’t efficiently sample from true posterior.



SMC to the Rescue
Want to sample futures given they are optimal:

How to do 
this?

Need a good proposal q(x1:h)

Model

Policy  q(a|s)



Soft Actor Critic (SAC) [Haarnoja et. al 2018]

SAC (fairly SOTA model-free RL) learns approximate Control as Inference.

Gives us an approximate proposal policy q(a|s).



Planning as Inference
Need maximum sequence length to be practical.

SMC
What to do 
about this?



Planning as Inference
Need maximum sequence length to be practical.

SMC SAC has a learned 
approximation.



Planning as Inference
Related to MCTS in AlphaGo Zero.

We started with an approximate model-free proposal policy q and a value V (from 
SAC).

Then we looked into the future with our model via SMC.

Which allowed us to pick a more accurate action (according to Control as 
Inference).



Scope and Limitations
Weight update assumes model is perfectly accurate.

When environment is stochastic, encourages risk seeking behaviours.



QMDP-Net
● Planning under partial observations
● Learn model of environment and planner 

simultaneously and end to end
● Learned model uses discrete states and 

actions
● Policy is trained by imitating expert data 

(supervised learning)



Related Work
- Value Iteration Networks: Fully differentiable neural 

network architecture for learning to plan. It embeds both a 
learned model of the environment and a value iteration 
planning module within. However, it assumes a fully 
observable setting and hence does not need filtering. 

- Bayesian Filtering: Common in robotics. Continuously 
update a robot’s belief about its state based on most recent 
sensor data. Recent works have shown this process to be 
end-to-end differentiable.

Policy

Model

Planner

s

a

Bayesian 
Filter

o



Main Contribution
- Extends VIN by also embedding a Bayesian Filter
- The entire framework is end-to-end differentiable



POMDP (Partially Observable MDP)
- Definition: POMDP is defined by the following components 

State space Latent

Action space Expert Data

Observation space Expert Data

State transition function Learned by NN

Observation transition Learned by NN

Reward function Learned by NN



POMDP - Bayesian Filtering

- The agent does not know its exact state and maintains a belief (a probability 
distribution) over all the states S

- Belief is recursively updated from past history 

New 
observation

Transition from 
previous belief



POMDP
- The planning objective is to obtain a policy that maximizes the expected total 

discounted reward:

- Solving POMDPs exactly is computationally intractable in the worst case*** 
(intuitively, because we need to integrate over all states - blowup!)

- Approximate solutions needed

***



QMDP-net: Overall architecture

- There are two main components: the QMDP planner (similar to VIN) and the 
Bayesian filter



QMDP Planner Module
- The planner module performs value iteration (each step is differentiable).  The 

architecture is very similar to Value Iteration Networks (VIN)
- Iteratively apply Bellman updates to the Q value map over states to refine it



Action selection
- The obtained Q value map is weighed by the computed belief over states to 

obtain a probability distribution over actions

- Select the action with maximum q( ) value



Highlights, Scope, and Limitations
- Only demonstrate on Imitation Learning (RL is possible in principle)
- Bayes filter is not “exact” but “useful”
- Discrete action and state model unlikely to scale to more complicated 

environments



Thank you for your time!
We will be happy to take questions



Appendix... next few slides
Stuff we didn’t have time for...



Importance Sampling (IS)
Integral intractable and can’t sample easily. 

But can sample from q(x). -> Approximate p(x) with N samples from q(x).

https://www.stats.ox.ac.uk/~doucet/doucet_defreitas_gordon_smcbookintro.pdf [1.3.2]

Also need to be able to evaluate p(x) exactly!

https://www.stats.ox.ac.uk/~doucet/doucet_defreitas_gordon_smcbookintro.pdf


Importance Sampling with Self-Normalized Weights
Integral intractable and can’t sample easily and can’t evaluate p(x).

But can evaluate p(x) upto normalizing constant.

Note: Very important for posterior inference:

Almost always hard



Importance Sampling with Self-Normalized Weights
Integral intractable and can’t sample easily and can’t evaluate p(x).

But can evaluate p(x) upto normalizing constant.

If we try defining the weight, ignoring C:

We see that our IS estimate is off by the multiplicative constant:



Importance Sampling with Self-Normalized Weights
Integral intractable and can’t sample easily and can’t evaluate p(x).

But can evaluate p(x) upto normalizing constant.

If we try defining the weight, ignoring C:

We see that our IS estimate is off by the multiplicative constant:

Idea: Normalize the weights!



Importance Sampling with Self-Normalized Weights
What if we normalize w(x)?

Average weight is an estimate of C:

Normalizing by weights amounts to normalizing by C:



Importance Sampling with Self-Normalizing Weights
Normalizing by weights amounts to normalizing by C:

Which motivates:

We explicitly normalize the weights so that they sum to 1.

(Diverge from theory -> incurs a bias but helps with variance reduction)



Sequential Importance Sampling (SIS)
Sample from a proposal distribution:

UpdateInitial 
Distribution



The overall algorithm
1. Sample actions from prior



The overall algorithm
1. Sample actions from prior
2. Simulate with model



The overall algorithm
1. Sample actions from prior
2. Simulate with model
3. Update weight of each branch 

using reward and SAC ‘Value’



The overall algorithm
1. Sample actions from prior
2. Simulate with model
3. Update weight of each branch 

using reward and SAC ‘Value’
4. Reallocate search particles to 

more promising branches



The overall algorithm
1. Sample actions from prior
2. Simulate with model
3. Update weight of each branch 

using reward and SAC ‘Value’
4. Reallocate search particles to 

more promising branches
5. Repeat until horizon



The overall algorithm
1. Sample actions from prior
2. Simulate with model
3. Update weight of each branch 

using reward and SAC ‘Value’
4. Reallocate search particles to 

more promising branches
5. Repeat until horizon
6. Randomly select first action 

from remaining branches



Deriving weight updates (read the paper for details)



Connection to MCTS in AlphaGo Zero

Planning with SMC AlphaGo Zero

Move selection criteria Q upper confidence bound

Environment model Learned p_model Self-play p

Amortised prior policy q from SAC Learned prior p

Amortised prior “value” V from SAC V upper confidence



Sequential Importance Sampling
Grow sequence incrementally:

Update w recursively:

But most particles might become useless (w->0)


