
Learning to plan:
Applications of search to

robotics
Kevin Xie* and Homanga Bharadhwaj*

*1st year Msc. students in Computer Science

Probabilistic Planning via Sequential Monte Carlo
Model-based RL method

Control as Inference heuristic

Sequential Monte Carlo action sampling

Sequential Monte Carlo Tutorial
A method for sampling from sequential distributions.

“Perfect” Monte Carlo (MC)
Integral intractable:

But can sample easily. -> Approximate p(x) with N samples from p(x):

Empirical
Measure

MC
Estimate

https://www.stats.ox.ac.uk/~doucet/doucet_defreitas_gordon_smcbookintro.pdf [1.3.1]

https://www.stats.ox.ac.uk/~doucet/doucet_defreitas_gordon_smcbookintro.pdf

“Perfect” Monte Carlo (MC)

p(x)

Importance Sampling (IS)
Integral intractable and can’t sample easily.

But can sample from q(x). -> Approximate p(x) with N samples from q(x).

https://www.stats.ox.ac.uk/~doucet/doucet_defreitas_gordon_smcbookintro.pdf [1.3.2]

https://www.stats.ox.ac.uk/~doucet/doucet_defreitas_gordon_smcbookintro.pdf

Importance Sampling

p(x)

q(x)

Sequential Monte Carlo (SMC)
Want to sample sequence:

From:

StepInitial
Distribution

Sequential Importance Sampling (SIS)
Sample from a proposal distribution:

StepInitial
Distribution

Time
x

t=1 Proposal Particles

Standard Importance
Sampling

Time 1 Particles

Time 1 Particlest-1

t

Sequence or “branch”

Time 2 Proposal
Particles

Time 1 Particles

Step Importance Ratio

Update Importance
Weights

t-1

t

Time 2 Particles

Time 2 Proposal
Particles

Time 1 Particles

Step Importance Ratio

Update Importance
Weights

t-1

t

Time 2 Particles

Time 2 Proposal
Particles

But weights could
become very small

t-1

t

Replacement Step:
● Discontinue low weight branches
● Refocus particles on high weight

branches

SIS with Replacement

SMC: SIS with Replacement
Only high probability branches
survive.

Still representative of the
overall distribution.

Model-based RL

Learns a model of the environment and uses it for RL

● Model Predictive Planning (f.e. PETS [Chua et al. 2018])
○ Simulate actions into the future
○ Pick ones that gave good value

Control as Inference
Proposes a heuristic for selecting actions.

Current belief of the agent:

Action A: Lose 1 dollar on average (higher chance to be “optimal”)

Action B: Lose 2 dollars on average

Control as inference:

Choose Action A more often than B.

But sometimes still choose B.

Control as Inference

To define this formally: Optimality Variable

Suppose an “optimal” future. Given that agent will lose as little
money as possible,

Sample actions according to how
likely they would have led to this
“optimality”.

which action did I likely take?

What is probability of “optimal”?
Heuristic: Exponential

Lower reward
->
Exponentially less likely of being ‘optimal’
->
Exponentially less likely to be sampled

Reward (Always negative)

MDP Setting
MDP:

Optimality at every point in time.

Choose action proportional to
chance of optimality over time.

But inference is hard =(
Can’t efficiently sample from true posterior.

SMC to the Rescue
Want to sample futures given they are optimal:

How to do
this?

Need a good proposal q(x1:h)

Model

Policy q(a|s)

Soft Actor Critic (SAC) [Haarnoja et. al 2018]

SAC (fairly SOTA model-free RL) learns approximate Control as Inference.

Gives us an approximate proposal policy q(a|s).

Planning as Inference
Need maximum sequence length to be practical.

SMC
What to do
about this?

Planning as Inference
Need maximum sequence length to be practical.

SMC SAC has a learned
approximation.

Planning as Inference
Related to MCTS in AlphaGo Zero.

We started with an approximate model-free proposal policy q and a value V (from
SAC).

Then we looked into the future with our model via SMC.

Which allowed us to pick a more accurate action (according to Control as
Inference).

Scope and Limitations
Weight update assumes model is perfectly accurate.

When environment is stochastic, encourages risk seeking behaviours.

QMDP-Net
● Planning under partial observations
● Learn model of environment and planner

simultaneously and end to end
● Learned model uses discrete states and

actions
● Policy is trained by imitating expert data

(supervised learning)

Related Work
- Value Iteration Networks: Fully differentiable neural

network architecture for learning to plan. It embeds both a
learned model of the environment and a value iteration
planning module within. However, it assumes a fully
observable setting and hence does not need filtering.

- Bayesian Filtering: Common in robotics. Continuously
update a robot’s belief about its state based on most recent
sensor data. Recent works have shown this process to be
end-to-end differentiable.

Policy

Model

Planner

s

a

Bayesian
Filter

o

Main Contribution
- Extends VIN by also embedding a Bayesian Filter
- The entire framework is end-to-end differentiable

POMDP (Partially Observable MDP)
- Definition: POMDP is defined by the following components

State space Latent

Action space Expert Data

Observation space Expert Data

State transition function Learned by NN

Observation transition Learned by NN

Reward function Learned by NN

POMDP - Bayesian Filtering

- The agent does not know its exact state and maintains a belief (a probability
distribution) over all the states S

- Belief is recursively updated from past history

New
observation

Transition from
previous belief

POMDP
- The planning objective is to obtain a policy that maximizes the expected total

discounted reward:

- Solving POMDPs exactly is computationally intractable in the worst case***
(intuitively, because we need to integrate over all states - blowup!)

- Approximate solutions needed

QMDP-net: Overall architecture

- There are two main components: the QMDP planner (similar to VIN) and the
Bayesian filter

QMDP Planner Module
- The planner module performs value iteration (each step is differentiable). The

architecture is very similar to Value Iteration Networks (VIN)
- Iteratively apply Bellman updates to the Q value map over states to refine it

Action selection
- The obtained Q value map is weighed by the computed belief over states to

obtain a probability distribution over actions

- Select the action with maximum q() value

Highlights, Scope, and Limitations
- Only demonstrate on Imitation Learning (RL is possible in principle)
- Bayes filter is not “exact” but “useful”
- Discrete action and state model unlikely to scale to more complicated

environments

Thank you for your time!
We will be happy to take questions

Appendix... next few slides
Stuff we didn’t have time for...

Importance Sampling (IS)
Integral intractable and can’t sample easily.

But can sample from q(x). -> Approximate p(x) with N samples from q(x).

https://www.stats.ox.ac.uk/~doucet/doucet_defreitas_gordon_smcbookintro.pdf [1.3.2]

Also need to be able to evaluate p(x) exactly!

https://www.stats.ox.ac.uk/~doucet/doucet_defreitas_gordon_smcbookintro.pdf

Importance Sampling with Self-Normalized Weights
Integral intractable and can’t sample easily and can’t evaluate p(x).

But can evaluate p(x) upto normalizing constant.

Note: Very important for posterior inference:

Almost always hard

Importance Sampling with Self-Normalized Weights
Integral intractable and can’t sample easily and can’t evaluate p(x).

But can evaluate p(x) upto normalizing constant.

If we try defining the weight, ignoring C:

We see that our IS estimate is off by the multiplicative constant:

Importance Sampling with Self-Normalized Weights
Integral intractable and can’t sample easily and can’t evaluate p(x).

But can evaluate p(x) upto normalizing constant.

If we try defining the weight, ignoring C:

We see that our IS estimate is off by the multiplicative constant:

Idea: Normalize the weights!

Importance Sampling with Self-Normalized Weights
What if we normalize w(x)?

Average weight is an estimate of C:

Normalizing by weights amounts to normalizing by C:

Importance Sampling with Self-Normalizing Weights
Normalizing by weights amounts to normalizing by C:

Which motivates:

We explicitly normalize the weights so that they sum to 1.

(Diverge from theory -> incurs a bias but helps with variance reduction)

Sequential Importance Sampling (SIS)
Sample from a proposal distribution:

UpdateInitial
Distribution

The overall algorithm
1. Sample actions from prior

The overall algorithm
1. Sample actions from prior
2. Simulate with model

The overall algorithm
1. Sample actions from prior
2. Simulate with model
3. Update weight of each branch

using reward and SAC ‘Value’

The overall algorithm
1. Sample actions from prior
2. Simulate with model
3. Update weight of each branch

using reward and SAC ‘Value’
4. Reallocate search particles to

more promising branches

The overall algorithm
1. Sample actions from prior
2. Simulate with model
3. Update weight of each branch

using reward and SAC ‘Value’
4. Reallocate search particles to

more promising branches
5. Repeat until horizon

The overall algorithm
1. Sample actions from prior
2. Simulate with model
3. Update weight of each branch

using reward and SAC ‘Value’
4. Reallocate search particles to

more promising branches
5. Repeat until horizon
6. Randomly select first action

from remaining branches

Deriving weight updates (read the paper for details)

Connection to MCTS in AlphaGo Zero

Planning with SMC AlphaGo Zero

Move selection criteria Q upper confidence bound

Environment model Learned p_model Self-play p

Amortised prior policy q from SAC Learned prior p

Amortised prior “value” V from SAC V upper confidence

Sequential Importance Sampling
Grow sequence incrementally:

Update w recursively:

But most particles might become useless (w->0)

