Theorem-Proving Environments

Nathan Ng
CSC2547: Learning to Search
Theorem Proving

• What is a theorem?
 • Statement proven based on basis of previously established statements
 • Premise: If I attend UofT, I am a student
 • Premise: I attend UofT
 • Theorem: I am a student

• Why do we want to prove theorems more efficiently?
 • Integrated Circuit Design
 • Program Verification
 • Formulating large proofs (Kepler Conjecture)
Propositional Logic

• 0th-order logic
 • Deals with statements that are either true or false
 • \(\neg(A \lor B) = \neg A \land \neg B \)
 • Proving a proposition is true can be reduced to SAT-solving
• Problem: not expressive enough for many theorems
 • Prove that there are an infinite number of primes
 • Only have a finite number of variables to use!
 • Prove that if \(1 < 4 \) and \(4 < 9 \), then \(1 < 9 \)
 • No concept of relations!
Predicate Logic

• 1st-order logic
 • Defines **predicates** and **quantifiers** over variables
 • predicates: expression over variables (property or relationship)
 • quantifiers: describe a set of variables we would like to consider
 • all philosophers are scholars
 • *for all* philosopher(Y), scholar(y)
 • Still not expressive enough!
 • Prove that the set of prime numbers is countable
 • need some way of expressing relationships between sets and predicates themselves
Higher Order Logic

• Defines set of predicates and quantifiers that can be applied to all domains
 • In first order logic, cannot express the predicates that A and B have some property in common
 • In higher order logic, we can write $\exists P, (P(A) \land P(B))$
What is an ATP?

- Automatic Theorem Prover
 - Can we program a computer to automatically prove theorems based on some core axioms?
 - very difficult problem
 - how does the computer know what action/strategy to take to reduce problem or solve subproblem?
 - higher order logics make procedures and verification more complex
- Can we build a framework for humans to use machines to help develop formal proofs?
What is an ITP?

• Interactive Theorem Prover
 • Not automatic!
 • Machine-aided theorem proving, but ultimately human-driven
 • automatically check proof
 • build repositories of previously proven knowledge
 • abstracts away easy tasks so human can focus on hard ones
• Why is this useful?
 • logically sound
 • allows for meta-reasoning
 • can be automated
 • practical and effective
How do we use an ITP?

• input theorem to prove as a goal
• ITP provides tactics to manipulate goal
 • may include arguments of previously proven theorems
 • produces subgoals to prove
• once all subgoals can be proved, goal is proven
• goals and subgoals form tree structure
How do we use an ITP?

Learning to Prove Theorems via Interacting with Proof Assistants [Yang, 2019]
HOL

- Higher Order Logic (HOL)
 - small trusted kernel of theorems
 - abstract data types
 - new theorems built on top using library functions
 - what does this mean for all theorems in this system?
HOL Light

- Intended to be a foundationally simpler version of HOL
 - Kernel is only a few hundred lines of code
 - highly scrutinized and self-verified
- 10 basic primitive inference rules
- 3 mathematical axioms
- extendable and programmable
 - can build public libraries of systems of proofs/theorems
 - automate theorem proving processes

Interactive Theorem Proving [Tuerk, 2019]
Coq

• Another ITP similar to HOL
• Different logical basis allows for dependent types
 • matmul (nat n m p): mat n m -> mat m p -> mat n p
 • In HOL, need to explicitly describe this dependence
• Less “push-button” than HOL
 • more explicit but also easier to write more complicated proof automation
Other ITPs

- Mizar
- Isabelle
- HOL4
- Lean
Towards an ATP in an ITP Environment

• Much of ITP is still human-driven
 • What tactic should we use on a given subgoal?
 • What arguments and theorems should we use in a given tactic?
 • How do we balance exploration of other strategies with investigation of current ones?
• Can we learn policies to effectively solve these problems without the need for humans?
HOList: An Environment for Machine Learning of Higher-Order Theorem Proving

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox
Imitation Learning

• From previous ITP proof logs, we have proof context, and human tactic/arguments
• Supervised learning on human examples
 • Given some proof context (goals, subgoals, proven theorems, etc.), decide what tactic and arguments to use
• Problem: limited by the amount of training examples humans can generate
 • System will learn to create proofs like humans, but what if this isn’t the best way?

GamePad: A Learning Environment for Theorem Proving [Huang. 2019]
Reinforcement Learning

- Allow agent to learn which actions to take itself
- Formulation as RL Problem
 - state
 - Proof search graph
 - action
 - tactic/argument
 - reward
 - proving a goal or subgoal
 - transition
 - application of tactics to current graph

Agent

Proof Search Graph (goals, tactics, etc.)

New subgoals and theorems

Tactic and Arguments
DeepHOL

• Can we build an effective reinforcement learning agent within the HOL Light environment?
 • Need some way to decide which tactic to apply to a goal
 • Rank tactics
 • Create arguments for each tactic
 • Keep track of goals and state of proof search in data structure (graph)

HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]
Dataset/Environment

- Proof export for HOL Light verification
- Theorem corpora for training and validation
 - core: theorems needed for tactics
 - complex: theorems of complex calculus
 - flyspeck: lemmas and theorems of Kepler Conjecture
- examples consist of goal, tactic, and arglist
 - goal: theorem to prove
 - tactic: tactic that led to a successful proof
 - arglist: arguments passed to tactic as arguments

HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]
DeepHOL: Action Generator

- Two towers
 - Goal Encoder generates Goal Embedding
 - Premise Encoder generates Premise Embedding
- Goal embedding used to generate tactics to use
- Premise embedding, goal embedding, and selected tactic used to generate arguments to use

HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]
Training the Action Generator

• Start training with supervised learning
 • use human proof logs
• Continue training with reinforcement learning loop
 • Trainer and multiple provers running continuously
 • each round consists of random sample of theorems
 • human training examples (optional)
 • previous experiment’s generated examples (optional)
 • freshly generated examples
 • historical training loop examples

HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]
Results

<table>
<thead>
<tr>
<th>Description</th>
<th>Proof success</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASM_MESON_TAC</td>
<td>6.1%</td>
</tr>
<tr>
<td>ASM_MESON_TAC + argument selection</td>
<td>9.2%</td>
</tr>
<tr>
<td>WaveNet</td>
<td>31.72%</td>
</tr>
<tr>
<td>Deeper WaveNet</td>
<td>32.65%</td>
</tr>
<tr>
<td>Wider WaveNet</td>
<td>27.60%</td>
</tr>
<tr>
<td>Loop</td>
<td>36.3%</td>
</tr>
<tr>
<td>Trained on loop output</td>
<td>36.8%</td>
</tr>
<tr>
<td>Loop tactic dependent</td>
<td>38.9%</td>
</tr>
</tbody>
</table>
Other Approaches

- GamePad: A Learning Environment for Theorem Proving
 - fewer theorems in dataset (1602 vs 29462)
 - proxy metrics of tactic prediction instead of actual theorem proving
 - also framed as RL problem with similar strategy
- Learning to Prove Theorems via Interacting with Proof Assistants
 - ASTactic uses encoder-decoder architecture
 - Supervised learning with teacher forcing instead of RL
 - use Coq outputs of human proof steps as training examples
- TacticToe: Learning to Prove with Tactics
 - Learn tactic predictor from human examples
 - Apply MTCS during proof tree search

HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]
GamePad

- **Tactic Prediction**
 - What tactic should we apply next given some input proof state?
- **Position Evaluation**
 - How many steps do we have left before we reach a successful proof?
 - Should be dependent on tactic predictor
 - better predictor uses less steps

Table 2: Test accuracies for position evaluation (Pos) and tactic prediction (Tac). † indicates kernel-level. ‡ indicates mid-level without implicit arguments. For tactic argument prediction, we report validation recall for models with a minimum precision of 10%

<table>
<thead>
<tr>
<th>Model</th>
<th>Pos†</th>
<th>Pos‡</th>
<th>Tac†</th>
<th>Tac‡</th>
<th>Tac‡ arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>53.66</td>
<td>53.66</td>
<td>44.75</td>
<td>44.75</td>
<td>-</td>
</tr>
<tr>
<td>SVM</td>
<td>57.37</td>
<td>57.52</td>
<td>48.94</td>
<td>49.45</td>
<td>-</td>
</tr>
<tr>
<td>GRU</td>
<td>65.30</td>
<td>65.74</td>
<td>58.23</td>
<td>57.70</td>
<td>25.98</td>
</tr>
<tr>
<td>TreeLSTM</td>
<td>68.44</td>
<td>66.30</td>
<td>60.63</td>
<td>60.55</td>
<td>23.91</td>
</tr>
</tbody>
</table>
ASTactic

- Encoder-decoder architecture
 - Encoding proof state (context and premises) using TreeLSTM
 - Use encoder embedding to generate tactic
- Teacher forcing
 - How to expand proof tree if prediction is wrong?
 - Force input at next step to be correct even if previous prediction was wrong

<table>
<thead>
<tr>
<th>Method</th>
<th>Success rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>trivial</td>
<td>2.4</td>
</tr>
<tr>
<td>auto</td>
<td>2.9</td>
</tr>
<tr>
<td>intuition</td>
<td>4.4</td>
</tr>
<tr>
<td>easy</td>
<td>4.9</td>
</tr>
<tr>
<td>hammer (default time limit)</td>
<td>17.8</td>
</tr>
<tr>
<td>hammer (extended time limit)</td>
<td>24.8</td>
</tr>
<tr>
<td>ours</td>
<td>12.2</td>
</tr>
<tr>
<td>ours + auto</td>
<td>12.8</td>
</tr>
<tr>
<td>ours + hammer</td>
<td>30.0</td>
</tr>
</tbody>
</table>