Theorem-Proving Environments Nathan Ng CSC2547: Learning to Search

Theorem Proving

- What is a theorem?
 - - Premise: If I attend UofT, I am a student
 - Premise: Lattend UofT
 - Theorem: I am a student
- Why do we want to prove theorems more efficiently?
 - Integrated Circuit Design
 - Program Verification
 - Formulating large proofs (Kepler Conjecture)

Statement proven based on basis of previously established statements

Propositional Logic

- Oth-order logic
 - Deals with statements that are either true or false
 - $\neg (A \lor B) = \neg A \land \neg B$
 - Proving a proposition is true can be reduced to SAT-solving
- Problem: not expressive enough for many theorems
 - Prove that there are an infinite number of primes
 - Only have a finite number of variables to use!
 - Prove that if 1 < 4 and 4 < 9, then 1 < 9
 - No concept of relations!

Predicate Logic

- 1st-order logic
 - Defines predicates and quantifiers over variables
 - predicates: expression over variables (property or relationship)
 - quantifiers: describe a set of variables we would like to consider
 - all philosophers are scholars
 - for all philosopher(Y), scholar(y)
- Still not expressive enough!
 - Prove that the set of prime numbers is countable
 - need some way of expressing relationships between sets and predicates themselves

Higher Order Logic

- Defines set of predicates and quantifiers that can be applied to all domains
 - In first order logic, cannot express the predicates that A and B have some property in common
 - In higher order logic, we can write $\exists P, (P(A) \land P(B))$

What is an ATP?

- Automatic Theorem Prover
 - Can we program a computer to automatically prove theorems based on some core axioms?
 - very difficult problem
 - how does the computer know what action/strategy to take to reduce problem or solve subproblem?
- higher order logics make procedures and verification more complex Can we build a framework for humans to use machines to help develop formal proofs?

What is an ITP?

- Interactive Theorem Prover
 - Not automatic!
 - automatically check proof
 - build repositories of previously proven knowledge
 - abstracts away easy tasks so human can focus on hard ones
- Why is this useful?
 - logically sound
 - allows for meta-reasoning
 - can be automated
 - practical and effective

Machine-aided theorem proving, but ultimately human-driven

How do we use an ITP?

- input theorem to prove as a goal
- ITP provides *tactics* to manipulate goal
 - may include arguments of previously proven theorems
 - produces subgoals to prove
- once all subgoals can be proved, goal is proven
- goals and subgoals form tree structure

Partial Evaluation of Functional Logic Programs [Alpuente, 1998]

How do we use an ITP?

Synthetic proof

Proof. induction a as [[a']. auto. Qed.

arning to Prove Theorems via Interacting with Proof Assistants [Yang, 2019]

- Higher Order Logic (HOL)
 - small trusted kernel of theorems
 - abstract data types
 - new theorems built on top using library functions
 - what does this mean for all theorems in this system?

HOL

A Brief Introduction to Higher Order Logic [Nesi, 2011]

- Intended to be a foundationally simpler version of HOL
 - Kernel is only a few hundred lines of code
 - highly scrutinized and self-verified
- 10 basic primitive inference rules
- 3 mathematical axioms \bullet
- extendable and programmable
 - can build public libraries of systems of proofs/theorems
 - automate theorem proving processes

Interactive Theorem Proving [Tuerk, 2019]

- Another ITP similar to HOL
- Different logical basis allows for dependent types
 - matmul (nat n m p): mat n m \rightarrow mat m p \rightarrow mat n p
 - In HOL, need to explicitly describe this dependence
- Less "push-button" than HOL

Cod

more explicit but also easier to write more complicated proof automation

Other ITPs

- Mizar
- Isabelle
- HOL4
- Lean

Towards an ATP in an ITP Environment

- Much of ITP is still human-driven
 - What tactic should we use on a given subgoal?
 - What arguments and theorems should we use in a given tactic?
 - How do we balance exploration of other strategies with investigation of current ones?
- Can we learn policies to effectively solve these problems without the need for humans?

HOList: An Environment for Machine Learning of Higher-Order Theorem Proving Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox

Imitation Learning

- From previous ITP proof logs, we have proof context, and human tactic/ arguments
- Supervised learning on human examples
 - Given some proof context (goals, subgoals, proven theorems, etc.), decide what tactic and arguments to use
- Problem: limited by the amount of training examples humans can generate
 - System will learn to create proofs like humans, but what if this isn't the best way?

Reinforcement Learning

- Allow agent to learn which actions to take itself
- Formulation as RL Problem
 - state
 - Proof search graph
 - action
 - tactic/argument
 - reward
 - proving a goal or subgoal
 - transition
 - application of tactics to current graph

DeepHOL

- Can we build an effective reinforcement learning agent within the HOL Light environment?
 - Need some way to decide which tactic to apply to a goal
 - Rank tactics
 - Create arguments for each tactic
 - Keep track of goals and state of proof search in data structure (graph)

Dataset/Environment

- Proof export for HOL Light verification
- Theorem corpora for training and validation
 - core: theorems needed for tactics
 - complex: theorems of complex calculus
 - flyspeck: lemmas and theorems of Kepler Conjecture
- examples consist of goal, tactic, and arglist
 - goal: theorem to prove
 - tactic: tactic that led to a successful proof • arglist: arguments passed to tactic as arguments

DeepHOL: Action Generator

- Two towers
 - Goal Encoder generates Goal Embedding
 - Premise Encoder generates Premise Embedding
- Goal embedding used to generate tactics to use
- Premise embedding, goal embedding, and selected tactic used to generate arguments to use

Training the Action Generator

- Start training with supervised learning
 - use human proof logs
- Continue training with reinforcement learning loop
 - Trainer and multiple provers running continuously
 - each round consists of random sample of theorems
 - human training examples (optional)
 - previous experiment's generated examples (optional)
 - freshly generated examples
 - historical training loop examples

Results

L	Description	Proof success
-	ASM_MESON_TAC	6.1%
	ASM_MESON_TAC +	
-	argument selection	9.2%
	WaveNet	31.72%
	Deeper WaveNet	32.65%
-	Wider WaveNet	27.60%
_	Loop	36.3%
t	Trained on loop output	36.8%
200	Loop tactic dependent	38.9%
200		

Other Approaches

- GamePad: A Learning Environment for Theorem Proving
 - fewer theorems in dataset (1602 vs 29462)
 - proxy metrics of tactic prediction instead of actual theorem proving
 - also framed as RL problem with similar strategy
- Learning to Prove Theorems via Interacting with Proof Assistants
 - ASTactic uses encoder-decoder architecture
 - Supervised learning with teacher forcing instead of RL
 - use Coq outputs of human proof steps as training examples
- TacticToe: Learning to Prove with Tactics
 - Learn tactic predictor from human examples
 - Apply MTCS during proof tree search

GamePad

- Tactic Prediction
 - What tactic should we apply next given some input proof state?
- Position Evaluation

 - Should be dependent on tactic predictor
 - better predictor uses less steps

Table 2: Test accuracies for position evaluation (Pos) and tactic prediction (Tac). † indicates kernellevel. ‡ indicates mid-level without implicit arguments. For tactic argument prediction, we report validation recall for models with a minimum precision of 10%

Model	$\operatorname{Pos}^{\dagger}$	Pos [‡]	Tac^{\dagger}	Tac [‡]	Tac [†] arguments
Constant	53.66	53.66	44.75	44.75	-
SVM	57.37	57.52	48.94	49.45	-
GRU	65.30	65.74	58.23	57.70	25.98
TreeLSTM	68.44	66.30	60.63	60.55	23.91

How many steps do we have left before we reach a successful proof?

ASTactic

- Encoder-decoder architecture
 - Encoding proof state (context a premises) using TreeLSTM
 - Use encoder embedding to generate tactic
- Teacher forcing
 - How to expand proof tree if prediction is wrong?
 - Force input at next step to be correct even if previous prediction was wrong

and	Method	Success rate (%)
	trivial	2.4
	auto	2.9
	intuition	4.4
	easy	4.9
	hammer (default time limit)	17.8
	hammer (extended time limit)	24.8
	ours	12.2
	ours + auto	12.8
	ours + hammer	30.0

