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Theorem Proving

• What is a theorem?

• Statement proven based on basis of previously established statements

• Premise: If I attend UofT, I am a student

• Premise: I attend UofT

• Theorem: I am a student


• Why do we want to prove theorems more efficiently?

• Integrated Circuit Design

• Program Verification

• Formulating large proofs (Kepler Conjecture)



Propositional Logic

• 0th-order logic

• Deals with statements that are either true or false

• 

• Proving a proposition is true can be reduced to SAT-solving


• Problem: not expressive enough for many theorems

• Prove that there are an infinite number of primes

• Only have a finite number of variables to use!


• Prove that if 1 < 4 and 4 < 9, then  1 < 9

• No concept of relations!

¬(A ∨ B) = ¬A ∧ ¬B



Predicate Logic

• 1st-order logic

• Defines predicates and quantifiers over variables

• predicates: expression over variables (property or relationship)

• quantifiers: describe a set of variables we would like to consider

• all philosophers are scholars

• for all philosopher(Y), scholar(y)


• Still not expressive enough!

• Prove that the set of prime numbers is countable

• need some way of expressing relationships between sets and 

predicates themselves



Higher Order Logic

• Defines set of predicates and quantifiers that can be applied to all 
domains

• In first order logic, cannot express the predicates that A and B have 

some property in common

• In higher order logic, we can write ∃P, (P(A) ∧ P(B))



What is an ATP?

• Automatic Theorem Prover

• Can we program a computer to automatically prove theorems based on 

some core axioms?

• very difficult problem

• how does the computer know what action/strategy to take to reduce 

problem or solve subproblem?

• higher order logics make procedures and verification more complex


• Can we build a framework for humans to use machines to help develop 
formal proofs?



What is an ITP?

• Interactive Theorem Prover

• Not automatic!

• Machine-aided theorem proving, but ultimately human-driven


• automatically check proof

• build repositories of previously proven knowledge

• abstracts away easy tasks so human can focus on hard ones


• Why is this useful?

• logically sound

• allows for meta-reasoning

• can be automated

• practical and effective



How do we use an ITP?

• input theorem to prove as a goal

• ITP provides tactics to manipulate goal

• may include arguments of previously proven theorems

• produces subgoals to prove


• once all subgoals can be proved, goal is proven

• goals and subgoals form tree structure

Partial Evaluation of Functional Logic Programs [Alpuente, 1998]



How do we use an ITP?

Learning to Prove Theorems via Interacting with Proof Assistants [Yang, 2019]



HOL

• Higher Order Logic (HOL) 

• small trusted kernel of theorems

• abstract data types

• new theorems built on top using library functions

• what does this mean for all theorems in this system?

A Brief Introduction to Higher Order Logic [Nesi, 2011]



HOL Light

• Intended to be a foundationally simpler 
version of HOL

• Kernel is only a few hundred lines of code

• highly scrutinized and self-verified


• 10 basic primitive inference rules

• 3 mathematical axioms

• extendable and programmable

• can build public libraries of systems of 

proofs/theorems

• automate theorem proving processes

Interactive Theorem Proving [Tuerk, 2019]



Coq

• Another ITP similar to HOL

• Different logical basis allows for dependent types

• matmul (nat n m p): mat n m -> mat m p -> mat n p

• In HOL, need to explicitly describe this dependence


• Less “push-button” than HOL

• more explicit but also easier to write more complicated proof automation

GamePad: A Learning Environment for Theorem Proving [Huang. 2019]



Other ITPs

• Mizar

• Isabelle

• HOL4

• Lean

GamePad: A Learning Environment for Theorem Proving [Huang. 2019]



Towards an ATP in an ITP Environment

• Much of ITP is still human-driven

• What tactic should we use on a given subgoal?

• What arguments and theorems should we use in a given tactic?

• How do we balance exploration of other strategies with investigation of 

current ones?

• Can we learn policies to effectively solve these problems without the need 

for humans?



HOList: An Environment for Machine 
Learning of Higher-Order Theorem Proving
Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and 

Stewart Wilcox



Imitation Learning

• From previous ITP proof logs, we have proof context, and human tactic/
arguments


• Supervised learning on human examples

• Given some proof context (goals, subgoals, proven theorems, etc.), 

decide what tactic and arguments to use

• Problem: limited by the amount of training examples humans can 

generate

• System will learn to create proofs like humans, but what if this isn’t the 

best way?

GamePad: A Learning Environment for Theorem Proving [Huang. 2019]



Reinforcement Learning

• Allow agent to learn which actions to take 
itself


• Formulation as RL Problem

• state

• Proof search graph


• action

• tactic/argument


• reward

• proving a goal or subgoal


• transition

• application of tactics to current graph

Agent

Proof Search Graph 
(goals, tactics, etc.)

Tactic and

Arguments

New subgoals

and theorems



DeepHOL

• Can we build an effective reinforcement learning agent within the HOL 
Light environment?

• Need some way to decide which tactic to apply to a goal

• Rank tactics

• Create arguments for each tactic


• Keep track of goals and state of proof search in data structure (graph)

HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]



Dataset/Environment

• Proof export for HOL Light verification

• Theorem corpora for training and validation

• core: theorems needed for tactics

• complex: theorems of complex calculus

• flyspeck: lemmas and theorems of Kepler Conjecture


• examples consist of goal, tactic, and arglist

• goal: theorem to prove

• tactic: tactic that led to a successful proof

• arglist: arguments passed to tactic as arguments

HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]



DeepHOL: Action Generator

• Two towers

• Goal Encoder generates Goal 

Embedding

• Premise Encoder generates 

Premise Embedding

• Goal embedding used to generate 

tactics to use

• Premise embedding, goal 

embedding, and selected tactic 
used to generate arguments to use

HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]



Training the Action Generator

• Start training with supervised learning

• use human proof logs


• Continue training with reinforcement learning loop

• Trainer and multiple provers running continuously

• each round consists of random sample of theorems

• human training examples (optional)

• previous experiment’s generated examples (optional)

• freshly generated examples

• historical training loop examples

HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]



Results

HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]



Other Approaches

• GamePad: A Learning Environment for Theorem Proving

• fewer theorems in dataset (1602 vs 29462)

• proxy metrics of tactic prediction instead of actual theorem proving

• also framed as RL problem with similar strategy


• Learning to Prove Theorems via Interacting with Proof Assistants

• ASTactic uses encoder-decoder architecture

• Supervised learning with teacher forcing instead of RL

• use Coq outputs of human proof steps as training examples


• TacticToe: Learning to Prove with Tactics

• Learn tactic predictor from human examples

• Apply MTCS during proof tree search

HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]



GamePad

• Tactic Prediction

• What tactic should we apply next given some input proof state?


• Position Evaluation

• How many steps do we have left before we reach a successful proof?

• Should be dependent on tactic predictor

• better predictor uses less steps

GamePad: A Learning Environment for Theorem Proving [Huang. 2019]



ASTactic

• Encoder-decoder architecture

• Encoding proof state (context and 

premises) using TreeLSTM

• Use encoder embedding to 

generate tactic

• Teacher forcing

• How to expand proof tree if 

prediction is wrong?

• Force input at next step to be 

correct even if previous prediction 
was wrong

GamePad: A Learning Environment for Theorem Proving [Huang. 2019]


