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Theorem Proving

 What is a theorem?
o Statement proven based on basis of previously established statements
e Premise: If | attend UofT, | am a student
 Premise: | attend UofT
e Theorem: | am a student
 Why do we want to prove theorems more efficiently?
* |ntegrated Circuit Design
 Program Verification
 Formulating large proofs (Kepler Conjecture)



Propositional Logic

* Oth-order logic
 Deals with statements that are either true or false
e =(AV B)=-AA-B
* Proving a proposition is true can be reduced to SAT-solving
* Problem: not expressive enough for many theorems
 Prove that there are an infinite number of primes
* Only have a finite number of variables to use!

e Provethatif1 <4and4<9,then 1<9
 No concept of relations!



Predicate Logic

* 1st-order logic
 Defines predicates and quantifiers over variables
e predicates: expression over variables (property or relationship)
e quantifiers: describe a set of variables we would like to consider
e all philosophers are scholars
e for all philosopher(Y), scholar(y)
o Still not expressive enough!
 Prove that the set of prime numbers is countable

 need some way of expressing relationships between sets and
predicates themselves



Higher Order Logic

* Defines set of predicates and quantifiers that can be applied to all
domains

e In first order logic, cannot express the predicates that A and B have
some property in common

* In higher order logic, we can write 4P, (P(A) A P(B))



What is an ATP?

e Automatic Theorem Prover

 Can we program a computer to automatically prove theorems based on
some core axioms?

» very difficult problem

 how does the computer know what action/strategy to take to reduce
problem or solve subproblem?

* higher order logics make procedures and verification more complex

e Can we build a framework for humans to use machines to help develop
formal proofs?



What is an ITP?

* Interactive Theorem Prover

 Not automatic!

 Machine-aided theorem proving, but ultimately human-driven

e automatically check proof

e build repositories of previously proven knowledge

* abstracts away easy tasks so human can focus on hard ones
 Why is this useful?

e |ogically sound

* allows for meta-reasoning

* can be automated

e practical and effective



How do we use an ITP?

iInput theorem to prove as a goal

ITP provides tactics to manipulate goal

 may include arguments of previously proven theorems
e produces subgoals to prove

once all subgoals can be proved, goal is proven

goals and subgoals form tree structure

Partial Evaluation of Functional Logic Programs [Alpuente, 1998]



How do we use an ITP?
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Learning to Prove Theorems via Interacting with Proof Assistants [Yang, 2019]



HOL

* Higher Order Logic (HOL)
 small trusted kernel of theorems
e abstract data types

 new theorems built on top using library functions
* what does this mean for all theorems in this system?

A Brief Introduction to Higher Order Logic [Nesi, 2011]



HOL Light

Cambridge LCF

Intended to be a foundationally simpler
version of HOL |
e Kernel is only a few hundred lines of code o
* highly scrutinized and self-verified Isabelle/HOL
10 basic primitive inference rules R PeoofPomes
3 mathematical axioms \Hm o
extendable and programmable /\
* can build public libraries of systems of e o
proofs/theorems

e automate theorem proving processes

HOLA4

Interactive Theorem Proving [Tuerk, 2019]




CoqQ

e Another ITP similar to HOL
o Different logical basis allows for dependent types
e matmul (natnmp) matnm->matmp->matnp

* |n HOL, need to explicitly describe this dependence
e Less “push-button” than HOL

 more explicit but also easier to write more complicated proof automation

GamePad: A Learning Environment for Theorem Proving [Huang. 2019]



Other ITPs

Mizar

|Isabelle
HOL4
Lean

GamePad: A Learning Environment for Theorem Proving [Huang. 2019]



Towards an ATP in an ITP Environment

 Much of ITP is still human-driven
 \What tactic should we use on a given subgoal?
 What arguments and theorems should we use in a given tactic”?

 How do we balance exploration of other strategies with investigation of
current ones?

 Can we learn policies to effectively solve these problems without the need
for humans?



HOList: An Environment for Machine

Learning of Higher-Order Theorem Proving

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and
Stewart Wilcox



Imitation Learning

 From previous ITP proof logs, we have proof context, and human tactic/
arguments

e Supervised learning on human examples

* Given some proof context (goals, subgoals, proven theorems, etc.),
decide what tactic and arguments to use

 Problem: limited by the amount of training examples humans can
generate
e System will learn to create proofs like humans, but what if this isn’t the
best way?

GamePad: A Learning Environment for Theorem Proving [Huang. 2019]



Reinforcement Learning

* Allow agent to learn which actions to take
itself

e Formulation as RL Problem
e gState

Agent

* Proof search graph
e action
» tactic/argument

New subgoals
and theorems

* reward
e proving a goal or subgoal

Proof Search Graph
(goals, tactics, etc.)

e transition
* application of tactics to current graph

Tactic and

Arguments




DeepHOL

 Can we build an effective reinforcement learning agent within the HOL
Light environment?

 Need some way to decide which tactic to apply to a goal
 Rank tactics

* Create arguments for each tactic
 Keep track of goals and state of proof search in data structure (graph)

HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]



Dataset/Environment

* Proof export for HOL Light verification
 Theorem corpora for training and validation

e core: theorems needed for tactics

« complex: theorems of complex calculus

e flyspeck: lemmas and theorems of Kepler Conjecture
e examples consist of goal, tactic, and arglist

e goal: theorem to prove

e tactic: tactic that led to a successful proof

e arglist: arguments passed to tactic as arguments

HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]



DeepHOL: Action Generator

e Two towers

 Goal Encoder generates Goal Goaf @) premlse ()
Embedding '- ' | -' '
_ { el (Ecr;)coder } { Premise Encoder (P) }
 Premise Encoder generates | | | | |
Premlse Embeddlng Goal Embegjding (G(g)) Theorem Embedding (P(t))
« Goal embedding used to generate
taCtICS tO use [ Tactic Cfiassifier ] { CombineArANetwork} { Theorem Scorer ]
(S) (C) (R)

 Premise embedding, goal
embedding, and selected tactic
used to generate arguments to use

HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]



Training the Action Generator

e Start training with supervised learning
 use human proof logs
e (Continue training with reinforcement learning loop
* Trainer and multiple provers running continuously
e each round consists of random sample of theorems
 human training examples (optional)
e previous experiment’s generated examples (optional)
* freshly generated examples
 historical training loop examples

HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]



Results
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HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]



Other Approaches

 GamePad: A Learning Environment for Theorem Proving
e fewer theorems in dataset (1602 vs 29462)
e proxy metrics of tactic prediction instead of actual theorem proving
* also framed as RL problem with similar strategy
* | earning to Prove Theorems via Interacting with Proof Assistants
 ASTactic uses encoder-decoder architecture
* Supervised learning with teacher forcing instead of RL
e use Coqg outputs of human proof steps as training examples
* Tacticloe: Learning to Prove with Tactics
e [earn tactic predictor from human examples
 Apply MTCS during proof tree search

HOList: An Environment for Machine Learning of Higher Order Theorem Proving [Bansal, 2019]



GamePad

e Tactic Prediction
 What tactic should we apply next given some input proof state?
 Position Evaluation
« How many steps do we have left before we reach a successful proof?
 Should be dependent on tactic predictor
e petter predictor uses less steps

Table 2: Test accuracies for position evaluation (Pos) and tactic prediction (Tac). 7 indicates kernel-
level. I indicates mid-level without implicit arguments. For tactic argument prediction, we report
validation recall for models with a minimum precision of 10%

Model Pos"  Pos*  Tac' Tac* Tac' arguments
Constant  53.66 53.66 44.75 44.75
SVM 57.37 57.52 48.94 49.45 -
GRU 65.30 65.74 58.23 57.70 25.98
TreeLSTM 68.44 66.30 60.63 60.55 23.91

GamePad: A Learning Environment for Theorem Proving [Huang. 2019]



ASTactic

e Encoder-decoder architecture

* Encoding proof state (context and Method Success rate (%)
premises) using TreeLSTM trivial 3
auto 2.
e Use encoder embeddlng to intuition 44

easy 4.9

generate tactic hammer (default ime Iimit) 17.8
e [Jeacher fOrcing hammer (extended time limit) 24.8

« How to expand proof tree if s o
predictiOn IS Wrong? ours + hammer 30.0

* Force input at next step to be
correct even if previous prediction
was wrong

GamePad: A Learning Environment for Theorem Proving [Huang. 2019]



