CSC2547 Presentation: Curiosity-driven exploration

Count-based VS Info gain-based

Sheng Jia, Tinglin Duan (First year master students)

Planning to Be Surprised: Optimal Bayesian Exploration in Dynamic Environments

Yi Sun, Faustino Gomez, and Jürgen Schmidhuber

VIME: Variational Information Maximizing Exploration

Rein Houthooft^{§†‡}, Xi Chen^{†‡}, Yan Duan^{†‡}, John Schulman^{†‡}, Filip De Turck[§], Pieter Abbeel^{†‡}

Unifying Count-Based Exploration and Intrinsic Motivation

Marc G. Bellemare bellemare@google.com

Tom Schaul

schaul@google.com

Sriram Srinivasan srsrinivasan@google.com

David Saxton saxton@google.com ostrovski@google.com Rémi Munos

Georg Ostrovski

munos@google.com

1. PLAN (2011)

1. VIME (NeurIPS2016)

1. CTS (NeurIPS2016)

Outline

- Motivation, Related Works and Demo
 - Planning to Be Surprised
 - Variational Information Maximizing Exploration
 - Unifying Count-Based Exploration and Intrinsic Motivation
 - Comparisons and Discussion

What is exploration?

Intrinsic motivation:

- Reducing the agent's uncertainty over the environment's dynamics.

 $\begin{array}{ll} \left[\mathsf{Plan} \right] & p\left(s_{t+1} | \xi_t, a_t; \theta \right) \\ \left[\mathsf{VIME} \right] & p\left(s_{t+1} | s_t, a_t; \theta \right) \end{array} p(\theta) \end{array}$

[CTS] Count-based

- Use (pseudo) visitation counts to guide agents to unvisited states.

Z-axis Intrinsic Reward

Why exploration useful?

DEMO Sparse Reward Problem Montezuma's revenge

Our original plot & demo

Related work (Timeline)

The notion of Intrinsic Motivation

L2 prediction error Pseudocount + Pixel CNN using neural networks

2010 Formal Theory of Creativity, Fun, and Intrinsic Motivation (1990-2010)

2015 Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models 2017 Count-Based Exploration with Neural Density Models

Pseudocount in 2016 still achieves SOTA for Montezuma's revenge"

2019 On Bonus Based Exploration Methods In The Arcade Learning Environment

2011 PLAN	2016 VIME	CTS	2018 Exploration by Random Network
Bayesian Optimal Exploration	Approximate "PLAN"	Pseudocount exploration	Distillation Distillation error as a quantification of uncertainty

Outline Motivation, Related Works and Demo Planning to Be Surprised Variational Information Maximizing Exploration Unifying Count-Based Exploration and Intrinsic Motivation Comparisons and Discussion

[PLAN] contribution

action

Dynamics model

 $p(s_{t+1}|\xi_t, a_t; \theta)$

Bayes update for posterior distribution of the dynamics model

$$p\left(\underbrace{\theta}_{y}|\xi_{t},a_{t},\underbrace{s_{t+1}}_{x}\right) = \frac{p\left(\underbrace{\theta}_{y}|\xi_{t},a_{t}\right)p\left(\underbrace{s_{t+1}}_{x}|\xi_{t},a_{t};\underbrace{\theta}_{y}\right)}{p\left(\underbrace{s_{t+1}}_{x}|\xi_{t},a_{t}\right)}$$

Optimal Bayesian Exploration based on:

$$q^{\tau}\left(\xi_{t}, a_{t}\right) = \mathbb{E}_{s_{t+1}|\xi_{t}, a_{t}}\left[D_{KL}\left[p\left(\theta|\xi_{t}, a_{t}, s_{t+1}\right)||p\left(\theta|\xi_{t}\right)\right]\right] + \mathbb{E}_{s_{t+1}|\xi_{t}, a_{t}}\left[\max_{a_{t+1}} q_{\pi}^{\tau-1}\left(\left(\xi_{t}, a_{t}, s_{t+1}\right), a_{t+1}\right)\right]$$

Expected cumulative Expected one-step info gain info gain fo tau steps if performing this

Expected cumulative info gain for tau-1 steps if performing this next action Г

[PLAN] Quantify "surprise" with info gain

$$\xi_t = (s_1, a_1, s_2, a_2, \dots, s_t)$$

$$\xi'_t = (s_1, a_1, s_2, a_2, \dots, s_t, a_t, \dots, s_{t'})$$

[PLAN] 1-step expected information gain

"1-step expected info gain" "expected immediate info gain"

$$\mathbb{E}_{s_{t+1} \sim P(\cdot|\xi_t, a_t)} \left[D_{KL} \left[p\left(\theta|\xi_t, a_t, s_{t+1}\right) || p\left(\theta|\xi_t\right) \right] \right] \\ = \sum_{s_{t+1}} p\left(s_{t+1}|\xi_t, a_t\right) \int p\left(\theta|\xi_t, a_t, s_{t+1}\right) \log \frac{p\left(\theta|\xi_t, a_t, s_{t+1}\right)}{p\left(\theta|\xi_t\right)} d\theta \\ = \sum_{s_{t+1}} \int p\left(s_{t+1}, \theta|\xi_t, a_t\right) \log \frac{p\left(s_{t+1}, \theta|\xi_t, a_t\right)}{\underbrace{p\left(\theta|\xi_t\right)} p\left(s_{t+1}|\xi_t, a_t\right)} d\theta \\ = I\left(S_{t+1}; \Theta|\xi_t, a_t\right)$$

NOTE: VIME uses this as the Intrinsic reward!

"Mutual info between next state distribution & model parameter"

[PLAN] "Planning to be surprised"

Cumulative τ steps info gain

Curious Q-value

 $q_{\pi}^{\tau} \left(\xi_{t}, a_{t}\right) = \mathbb{E}_{s_{t+1}, a_{t+1}, s_{t+2}, \cdots a_{t+\tau}, s_{t+\tau+1} | \xi_{t}, a_{t}} D_{KL} \left[p\left(\theta | \xi_{t}, a_{t}, s_{t+1}, a_{t+1}, \cdots, a_{t+\tau}, s_{t+\tau+1}\right) | | p\left(\theta | \xi_{t}\right) \right]$ Follow a policy "Planning tau steps" because not actually observed yet

[PLAN] Optimal Bayesian Exploration policy

[Method1] Computing optimal curiosity-Q backwards for tau steps

$$q^{\tau}\left(\xi_{t}, a_{t}\right) = \mathbb{E}_{s_{t+1}|\xi_{t}, a_{t}}\left[D_{KL}\left[p\left(\theta|\xi_{t}, a_{t}, s_{t+1}\right)||p\left(\theta|\xi_{t}\right)\right]\right] + \mathbb{E}_{s_{t+1}|\xi_{t}, a_{t}}\left[\max_{a_{t+1}} q^{\tau-1}\left(\left(\xi_{t}, a_{t}, s_{t+1}\right), a_{t+1}\right)\right]$$

[Method2] Policy Iteration

Repeat applying

Policy evaluation

$$v_{\pi}^{\tau}(\xi_{t}) = \mathbb{E}_{a_{t}|\xi_{t}}\left[\mathbb{E}_{s_{t+1}|\xi_{t},a_{t}}\left[D_{KL}\left[p\left(\theta|\xi_{t},a_{t},s_{t+1}\right)||p\left(\theta|\xi_{t}\right)\right] + v_{\pi}^{\tau-1}\left(\xi_{t},a_{t},s_{t+1}\right)\right]\right]$$

Policy improvement $\pi^{\tau}(\xi_t) = \arg \max q^{\tau}(\xi_t, a_t) :$

Della del del del

[Plan] Non-triviality of curious Q-value

Cumulative information gain fluctuates! Sum of immediate information gain Cumulative information gain w.r.t. prior Info gain additive in expectation! KL divergence $\mathbb{E}_{\xi_{t}^{\prime\prime}||\xi_{t}}\left[D_{KL}\left[p\left(\theta|\xi_{t}^{\prime\prime}\right)||p\left(\theta|\xi_{t}\right)\right]\right] = D_{KL}\left[p\left(\theta|\xi_{t}^{\prime}\right)||p\left(\theta|\xi_{t}\right)\right] + \mathbb{E}_{\xi_{t}^{\prime\prime}||\xi_{t}}\left[D_{KL}\left[p\left(\theta|\xi_{t}^{\prime\prime}\right)||p\left(\theta|\xi_{t}^{\prime\prime}\right)\right]\right]$ Cumulative != Sum $D_{KL}\left[p\left(\theta|\xi_{t}^{\prime\prime}\right)||p\left(\theta|\xi_{t}\right)\right] \neq D_{KL}\left[p\left(\theta|\xi_{t}^{\prime}\right)||p\left(\theta|\xi_{t}\right)\right] + D_{KL}\left[p\left(\theta|\xi_{t}^{\prime\prime}\right)||p\left(\theta|\xi_{t}^{\prime\prime}\right)\right]$ number of samples

Policy iteration (Dynamic programming approximation to optimal bayesian exploration)

[Plan] Results

Outline

- Motivation, Related Works and Demo
- Planning to Be Surprised
- Variational Information Maximizing Exploration
 - Unifying Count-Based Exploration and Intrinsic Motivation
 - Comparisons and Discussion

[VIME] contribution

$$p\left(s_{t+1}|s_t, a_t; \theta\right)$$

Variational inference for posterior distribution of dynamics model

1-step exploration bonus

$$\phi' = \underset{\phi}{\arg\min} \left[\underbrace{\frac{\mathcal{D}_{\mathrm{KL}}[q(\theta;\phi) \parallel q(\theta;\phi_{t-1})]}{\mathcal{D}_{\mathrm{KL}}(q(\theta;\phi))}}_{\ell_{\mathrm{KL}}(q(\theta;\phi))} - \mathbb{E}_{\theta \sim q(\cdot;\phi)} \left[\log p(s_t | \xi_t, a_t; \theta) \right] \right]$$

 $r'(s_t, a_t, s_{t+1}) \leftarrow r(s_t, a_t) + \eta D_{\mathrm{KL}}[q(\theta; \phi'_{n+1}) \| q(\theta; \phi_{n+1})]$

[VIME] Quantify the information gained

Reminder: PLAN cumulative info gain

 $KL(p(\theta|\xi_t')||p(\theta|\xi_t))$

 $\xi_t = (s_1, a_1, s_2, a_2, \dots, s_t)$

$D_{\mathrm{KL}}[p(\theta|\xi_t, a_t, s_{t+1}) \| p(\theta|\xi_t)]$

[VIME] Variational Bayes
What's hard?
$$p\left(\underbrace{\theta}_{y}|\xi_{t},a_{t},\underbrace{s_{t+1}}_{x}\right) = \frac{p\left(\underbrace{\theta}_{y}|\xi_{t},a_{t}\right)p\left(\underbrace{s_{t+1}}_{x}|\xi_{t},a_{t};\underbrace{\theta}_{y}\right)}{p\left(\underbrace{s_{t+1}}_{x}|\xi_{t},a_{t}\right)}$$

Computing posterior for highly parameterized models (e.g. neural networks)

Approximate posterior
$$q(\theta;\phi) \approx p(\theta|\xi_t, a_t, s_{t+1})$$
 by minimizing $D_{KL} \left[q(\theta;\phi) \mid \mid p(\theta|\xi_t, a_t, s_{t+1}) \right]$
 $\ell(q(\theta;\phi), s_t)$
Minimize negative ELBO $\phi' = \arg \min_{\phi} \left[\underbrace{D_{KL}[q(\theta;\phi) \mid \mid q(\theta;\phi_{t-1})]}_{\ell_{KL}(q(\theta;\phi))} - \mathbb{E}_{\theta \sim q(\cdot;\phi)} \left[\log p(s_t|\xi_t, a_t;\theta) \right] \right]$

[VIME] Optimization for variational bayes

How to minimize negative ELBO? $\ell(q(\theta;\phi),s_t)$

Take an efficient **single second-order** (Newton) update step to minimize negative ELBO:

 $\Delta \phi = H^{-1}(\ell) \nabla_{\phi} \ell(q(\theta; \phi), s_t)$

[VIME] Estimate 1-step expected info gain

What's hard? $\mathbb{E}_{s_{t+1} \sim \mathcal{P}(\cdot|\xi_t, a_t)} \left[D_{\mathrm{KL}}[p(\theta|\xi_t, a_t, s_{t+1}) \| p(\theta|\xi_t)] \right]$

Computing the exact one-step expected info-gain. Highdimensional states

 \rightarrow Monte-carlo estimation.

$$a_t \sim \pi_{\alpha}(s_t) \quad s_{t+1} \sim \mathcal{P}(\cdot|s_t, a_t)$$

 $r'(s_t, a_t, s_{t+1}) = r(s_t, a_t) + \eta D_{\mathrm{KL}}[p(\theta|\xi_t, a_t, s_{t+1}) \| p(\theta|\xi_t)]$

[VIME] Results (Walker-2D)

 $\mathcal{S} \subseteq \mathbb{R}^{20}$ $\mathcal{A} \subseteq \mathbb{R}^{6}$

RL algorithm: TRPO

Dense reward

Average extrinsic return

Figure 3: Performance of TRPO with and without VIME on the high-dimensional Walker2D lo-comotion task.

[VIME] Results (Swimmer-Gather)

Sparse reward

 $\mathcal{S} \subseteq \mathbb{R}^{33}$ $\mathcal{A} \subseteq \mathbb{R}^2$

RL algorithm: TRPO

Average extrinsic return

Figure 5: Performance of TRPO with and without VIME on the challenging hierarchical task SwimmerGather.

Outline

- Motivation, Related Works and Demo
 - Planning to Be Surprised
 - Variational Information Maximizing Exploration

Unifying Count-Based Exploration and Intrinsic Motivation

Comparisons and Discussion

[CTS] contribution

States Density model

 $\rho_n(x)$

Pseudo-count

$$\hat{N}_{n}(x) = \frac{\rho_{n}(x)(1 - \rho'_{n}(x))}{\rho'_{n}(x) - \rho_{n}(x)}$$

1-step exploration bonus

$$R_n^+(x,a) := \beta (\hat{N}_n(x) + 0.01)^{-1/2}$$

[CTS] Count state visitation

Empirical distribution

$$\mu_n(x):=\mu(x\,;\,x_{1:n}):=\frac{N_n(x)}{n} \stackrel{\text{\tiny empirical count}}{\longrightarrow}$$

These two are different states!

But we want to increment visitation counts for both when visiting either one.

Pixel difference

[CTS] Introduce state density model $\rho_n(x) := \rho(x; x_{1:n})$ $\rho'_{n}(x) := \rho(x; x_{1:n}x)$ $\mathsf{p} \quad \rho'_n(x) = \Pr_{\rho}(X_{n+2} = x \mid X_1 \dots X_n = x_{1:n}, X_{n+1} = x)$ ► S ► S x=s1 s2 X =s1 s2

р

How to update CTS density model?

Check the "context tree switching" paper! <u>https://arxiv.org/abs/1111.3182</u>

This was the difficulty of reading this paper as it only shows a bayes rule update for mixture of density models

Remark: For pixel-cnn density model in "Count-based exploration with **neural density model**", just **backprop**.

[CTS] Derive pseudo-count from density model

pseudo-count function $\hat{N}_n(x)$ pseudo-count total \hat{n}

Two constraints: Linear system Pseudo-count derived!

[CTS] Results (Montezuma's Revenge)

State: 84x84x4 # Actions: 18

RL algorithm: Double DQN

Outline

- Planning to Be Surprised
 - Variational Information Maximizing Exploration
 - Unifying Count-Based Exploration and Intrinsic Motivation

Summary, Comparisons and Discussion

Deriving posterior dynamics model/ density model

PLAN

VIME

CTS

p(x)

Bayes rule

Variational inference

Bayes rule

Policy trained with the reward augmented by intrinsic reward.

[VIME] 1-step Information gain

Intrinsic reward =
$$D_{\mathrm{KL}}[p(\theta|\xi_t, a_t, s_{t+1}) || p(\theta|\xi_t)]$$

[CTS] Pseudo-count

Intrinsic reward =
$$\frac{1}{\sqrt{\hat{N}_n(x)}}$$
 $\hat{N}_n(x) = \frac{\rho_n(x)(1-\rho'_n(x))}{\rho'_n(x)-\rho_n(x)}$

~ <

[PLAN] Directly argmax(curiosity Q)

Pseudo-count VS Intrinsic Motivation

Mixture model

$$\underbrace{\omega_n\left(\rho,x\right)}_{p(y|x)} = \underbrace{\frac{\underbrace{\omega_n\left(\rho\right)}_{p(y)} \underbrace{\rho\left(x;x_{1:n}\right)}_{p(x|y)}}{\int_{\rho\in\mathcal{M}} \underbrace{\omega_n\left(\rho\right)\rho\left(x;x_{1:n}\right)d\rho}_{p(x)}}$$

 $\langle \rangle$

$$IG_n(x) := IG(x; x_{1:n}) := KL(w_n(\cdot, x) || w_n)$$

"Unifying count-based exploration and intrinsic motivations"!

$$IG_n(x) \le \hat{N}_n(x)^{-1/2}$$

Limitations & Future Directions

- $\begin{array}{ll} \text{PLAN} & \rightarrow \text{Intractable posterior \& use dynamics model for expectation} \\ & \text{Difficult to be scaled outside Tabular RL.} \end{array}$
- VIME \rightarrow Currently maximize sum of 1-step info gain.

CTS

 \rightarrow which density model leads to better generalization over states?

Learning rates of policy network VS Updating dynamic model/density model.

Thank you!

(Appendix)

Our derivation for "Additive in expectation"

$$\mathbb{E}_{p(h''|h')} g(h''||h) = \mathbb{E}_{p(h''|h')} [KL(p(\theta|h'') ||p(\theta|h))]$$

$$= \int \int p(h''|h') p(\theta|h'') \log \frac{p(\theta|h'')}{p(\theta|h)} d\theta dh''$$

$$= \int \int p(h''|h') p(\theta|h'') \log \frac{p(\theta|h'')}{p(\theta|h)} \log \frac{p(\theta|h')}{p(\theta|h)} d\theta dh'' + \int \int p(h''|h') p(\theta|h'') \log \frac{p(\theta|h'')}{p(\theta|h')} d\theta dh''$$

$$= \int \int p(h''|h') \log \frac{p(\theta|h')}{p(\theta|h')} \log \frac{p(\theta|h')}{p(\theta|h)} d\theta dh'' + \mathbb{E}_{p(h''|h')} g(h''||h') \log \frac{p(\theta|h'')}{p(\theta|h')} d\theta dh''$$

$$= \int \left(\int p(h''|\theta, h') p(\theta|h') dh'' \right) \log \frac{p(\theta|h')}{p(\theta|h)} d\theta + \mathbb{E}_{p(h''|h')} g(h''||h')$$

$$= \int \left(\int p(h''|\theta, h') p(\theta|h') dh'' \right) \log \frac{p(\theta|h')}{p(\theta|h)} d\theta + \mathbb{E}_{p(h''|h')} g(h''||h')$$

$$= KL(p(\theta|h') ||p(\theta|h)) + \mathbb{E}_{p(h''|h')} g(h''||h')$$

$$= g(h'||h) + \mathbb{E}_{p(h''|h')} g(h''||h')$$

