Efficient Nonmyopic Active Search

Jiang, Malkomes, Converse, Shofner, Moseley, Garnett. ICML 2017

Presented by Arghavan Modiri, Jingkang Wang, Jinman Zhao

CSC 2547, Oct 18th

Active Learning

Supervised Learning

Why active learning matters?

- Collecting data is much cheaper than annotating them
 - we have large-scale unlabeled data
- Labeling data is very difficult, time-consuming, or expensive

Active learning helps model learn more efficiently (compared to random sampling)

Uncertainty Sampling

З

 Query examples that the learner are most uncertain about (i.e., instances near the decision boundary of the model)

400 instances sampled from 2 class Gaussians

random sampling 30 labeled instances (accuracy=0.7)

$$x^* \triangleq \arg\min_x \left| \Pr(y = 1 \mid x, \mathcal{D}) - \frac{1}{2} \right|$$

uncertainty sampling 30 labeled instances (accuracy=0.9)

[Lewis & Gale, SIGIR'94]₅

Uncertainty Sampling

- For multiclass problems
 - least confidence

$$x_{LC}^* = \underset{x}{\operatorname{argmax}} 1 - P_{\theta}(\hat{y}|x)$$
$$\hat{y} = \operatorname{argmax}_{y} P_{\theta}(y|x)$$

• margin sampling

$$x_M^* = \underset{x}{\operatorname{argmin}} P_\theta(\hat{y}_1|x) - P_\theta(\hat{y}_2|x)$$

 \hat{y}_1 and \hat{y}_2 are the first and second most probable class labels

entropy

$$x_{H}^{*} = \underset{x}{\operatorname{argmax}} - \sum_{i} P_{\theta}(y_{i}|x) \log P_{\theta}(y_{i}|x)$$

Other Query Strategies

- Query-By-Committee (QBC)
 - maintain a committee for voting query candidates
- Expected Model Change
 - impart the greatest change to the current model
- Expected Error Reduction
 - how much its generalization error is likely to be reduced
- Variance Reduction
 - minimizing output variance
- Density-Weighted Methods
 - modifying the input distribution and pick informative instances (uncertain and representative)

Active Search

sequentially inspecting data to discover members of a rare, desired class.

Active Search

sequentially inspecting data to discover members of a rare, desired class.

What is the best policy to select between data points such that we can find more of the *target* class in a given number of queries?

Active Search

- Given a finite domain of elements $\mathcal{X} \triangleq \{x_i\}$
- target set $\mathcal{R} \subset \mathcal{X}$
- budget t

Goal: Maximizing the utility function in budget t

$$u(\mathcal{D}) \triangleq \sum_{y_i \in \mathcal{D}} y_i$$

where

$$\mathcal{D} \triangleq \{(x_i, y_i)\} \quad y \triangleq \mathbb{1}\{x \in \mathcal{R}\}$$

 Assume we have a probabilistic classification model that provides

$$\Pr(y = 1 \mid x, \mathcal{D})$$

The optimal policy

$$x_{i}^{*} \triangleq \underset{x_{i} \in \mathcal{X} \setminus \mathcal{D}_{i-1}}{\operatorname{arg\,max}} \mathbb{E} \left[u(\mathcal{D}_{t}) \mid x_{i}, \mathcal{D}_{i-1} \right]$$

How to solve above Equation?

Optimal Policy for the last query (i=t) :

- Intuition
 - There is no need to explore
 - The optimal decision should be greedy

Time step i = t [n - (t-1)] nodes are unlabeled

Optimal Policy for the last query (i=t) :

- Intuition
 - There is no need to explore
 - The optimal decision should be greedy

 Solving Bayesian Policy equation confirms Time step i = t [n - (t-1)] nodes are unlabeled

$$\mathbb{E}\left[u(\mathcal{D}_t) \mid x_t, \mathcal{D}_{t-1}\right] = u(\mathcal{D}_{t-1}) + \Pr(y_t = 1 \mid x_t, \mathcal{D}_{t-1})$$

last query for our example:

last query for our example:

Optimal Policy when two queries are left (i = t - 1)

- policy is not as trivial
- the probability model changes after the first choice

Optimal Policy when two queries are left (i = t - 1)

- policy is not as trivial
- the probability model changes after the first choice

Solving Bayesian Policy equation

$$\mathbb{E} \left[u(\mathcal{D}_{t}) \mid x_{t-1}, \mathcal{D}_{t-2} \right] = u(\mathcal{D}_{t-2}) + \\ \Pr(y_{t-1} = 1 \mid x_{t-1}, \mathcal{D}_{t-2}) + \\ \mathbb{E}_{y_{t-1}} \left[\max_{x_{t}} \Pr(y_{t} = 1 \mid x_{t}, \mathcal{D}_{t-1}) \right]$$

Optimal Policy when two queries are left (i = t - 1)

- policy is not as trivial
- the probability model changes after the first choice

Solving Bayesian Policy equation

$$\mathbb{E}\left[u(\mathcal{D}_{t}) \mid x_{t-1}, \mathcal{D}_{t-2}\right] = u(\mathcal{D}_{t-2}) + \text{Exploitation}$$

$$\Pr(y_{t-1} = 1 \mid x_{t-1}, \mathcal{D}_{t-2}) + \mathbb{E}_{y_{t-1}}\left[\max_{x_{t}} \Pr(y_{t} = 1 \mid x_{t}, \mathcal{D}_{t-1})\right]$$

Optimal Policy when two queries are left (i = t - 1)

- policy is not as trivial
- the probability model changes after the first choice

Solving Bayesian Policy equation

 $\mathbb{E}\left[u(\mathcal{D}_t) \mid x_{t-1}, \mathcal{D}_{t-2}\right] = u(\mathcal{D}_{t-2}) +$

Two queries are left:

Two queries are left:

Two queries are left:

Bayesian Policy equation (General Form)

$$\mathbb{E}\left[u(\mathcal{D}_{t}) \mid x_{i}, \mathcal{D}_{i-1}\right] = u(\mathcal{D}_{i-1}) + \underbrace{\Pr(y_{i} = 1 \mid x_{i}, \mathcal{D}_{i-1})}_{\text{exploitation, < 1}} + \underbrace{\mathbb{E}_{y_{i}}\left[\max_{x'} \mathbb{E}\left[u(\mathcal{D}_{t} \setminus \mathcal{D}_{i}) \mid x', \mathcal{D}_{i}\right]\right]}_{\text{exploitation, < 1}}$$

exploration, < t - i

Time complexity: $\mathcal{O}((2n)^{\ell})$

- where ℓ is the lookahead $\ell = t i + 1$
- n is the total number of unlabeled point

There is no *polynomial-time* active search policy with a constant factor approximation ratio for optimizing the expected utility.

Myopic Approach

1-step ahead myopic

$$x_i^* = \arg\max_{x_i} \mathbb{E}[u(\mathcal{D}_i)|x_i, \mathcal{D}_{i-1}]$$

2-step ahead myopic

$$x_i^* = \arg\max_{x_i} \mathbb{E}[u(\mathcal{D}_{i+1})|x_i, \mathcal{D}_{i-1}]$$

Toy Example

 $I\,\triangleq\,[0,1]^2$

- Target: all points within Euclidean distance $^{1\!/\!4}$ from either the center or any corner of ~I

Experiments (Active Search)

- Dataset: CiteSeer citation network (38079 nodes)
- Target: Papers appearing in NeurIPS (2198 in total, 5.2%)
- Features: extracted by PCA

Figure 3: Cumulative number of targets found during 1000 steps of several active querying schemes on the CiteSeer^x data. The dashed red line shows the expected performance of random sampling.

- 1-step: 167 targets
- 2-step: 180 targets
- 3-step: 187 targets
- 6.5 times better than random search

Search-space pruning

- Pruning improves the search efficiency
- Still exponential

Table 1: The average time (in seconds) taken for one iteration of the ℓ -step lookahead optimal search policy on the CiteSeer^x data, for $1 \le \ell \le 4$. Some times are approximate. For reference, the one-step policy took an average of 2.24×10^{-3} s per iteration.

	$\ell=2$	$\ell = 3$	$\ell = 4$
pruning no pruning	$\begin{array}{c} 0.228\mathrm{s}\\ 166\mathrm{s} \end{array}$	$15.0\mathrm{s}$ $pprox 146\mathrm{days}$	$745\mathrm{s}$ $pprox 30500\mathrm{years}$
speedup	731	8.42×10^5	$1.29 imes 10^9$

Approximating Bayesian Optimal Policy

Reminder: Bayesian Optimal Policy

$$\mathbb{E}\left[u(\mathcal{D}_{t}) \mid x_{i}, \mathcal{D}_{i-1}\right] = u(\mathcal{D}_{i-1}) + \Pr(y_{i} = 1 \mid x_{i}, \mathcal{D}_{i-1}) + \underbrace{\mathbb{E}_{y_{i}}\left[\max_{x'} \mathbb{E}\left[u(\mathcal{D}_{t} \setminus \mathcal{D}_{i}) \mid x', \mathcal{D}_{i}\right]\right]}_{\text{exploration, } < t-i}$$

Approximating Bayesian Optimal Policy

$$\mathbb{E}\left[u(\mathcal{D}_{t}) \mid x_{i}, \mathcal{D}_{i-1}\right] \approx u(\mathcal{D}_{i-1}) + \Pr(y_{i} = 1 \mid x_{i}, \mathcal{D}_{i-1}) + \underbrace{\mathbb{E}_{y_{i}}\left[\sum_{t=i}^{\prime} \Pr(y = 1 \mid x, \mathcal{D}_{i})\right]}_{\text{exploration, } < t-i}$$

assume that any remaining points, in our budget will be selected simultaneously in one big batch

Approximating Bayesian Optimal Policy

We will call this policy efficient nonmyopic search (ENS).

$$\mathbb{E}\left[u(\mathcal{D}_{t}) \mid x_{i}, \mathcal{D}_{i-1}\right] \approx u(\mathcal{D}_{i-1}) + \Pr(y_{i} = 1 \mid x_{i}, \mathcal{D}_{i-1}) + \underbrace{\mathbb{E}_{y_{i}}\left[\sum_{t=i}^{\prime} \Pr(y = 1 \mid x, \mathcal{D}_{i})\right]}_{\text{exploration, } < t-i}$$

Time complexity: $\mathcal{O}(n^2 \log n)$

ENS (Example)

at *i*th query (t - i nodes are left to be labelled)

ENS (Example)

at *i*th query (t - i nodes are left to be labelled)

Until we find the ${\mathcal X}$ with maximum utility...

Efficient nonmyopic search (ENS)

When does ENS become the exact Bayesian optimal policy?

Efficient nonmyopic search (ENS)

When does ENS become the exact Bayesian optimal policy?

• if after observing \mathcal{D}_i , the labels of all remaining unlabeled points are conditionally independent

Nonmyopic Behavior

 $I \triangleq [0,1]^2$

Target: all points within Euclidean distance 1/4 from either the center or any corner of *I*

Budget: 200

2-step lookhead:

ENS:

first 100 points

last 100 points

Experiment

Figure 2: The learning curve of our policy and other baselines on the CiteSeer^x dataset.

Zoom

CiteSeer ^{x} data								
		query number						
policy	100	300	500	700	900			
RG	19.7	60.0	104	140	176			
IMS	26.3	86.3	147	214	281			
one-step two-step	25.5 24.9	80.5 89.8	141 155	209 220	273 287			
ENS-900 ENS-700 ENS-500 ENS-300 ENS-100	25.9 28.0 28.7 26.4 30.7	94.3 105 112 105	163 188 189	239 259	308			

Limitations

- Bayesian optimal policy and myopic methods (when lookahead step is large) are sample inefficient
- Assume the conditional independence of unlabelled data (ENS)
 - limited performance when budget is very small
- Can not deal with the continuous search space
- Difficult to generalize other more general setting
 - Bayesian Optimization, Multi-bandits, Reinforcement Learning

Takeaways

- Optimal Bayesian Policy (intractable)
- Myopic approach for approximating the optimal policy
 - Less-myopic approximations perform better
- Efficient nonmyopic search (ENS) improves the search efficiency but rely on strong assumptions

Related Work

- 1) ENS in batch mode (query a batch of points at a time)
 - a) efficiency improvement
 - b) theoretical guarantee of performance not that worse compared to query one at a time (Jiang et al., 2018)
- 1) Bayesian Optimization (BO)
 - a) AS can be seen as a special case of BO with binary observations and cumulative reward
 - b) Non-myopic policies for BO in the regression setting (Ling et al., 2016)
 - c) ENS is similar to GLASS algorithm (González et al., 2016)
- 1) Multi-armed bandit
 - a) electing an item can understood as "pulling an arm"
 - b) items are correlated and cannot be played twice
 - c) ENS is similar to *knowledge gradient* policy (Frazier et al., 2008)

References

[1] Settles, B. (2009). **Active learning literature survey**. University of Wisconsin- Madison Department of Computer Sciences.

[2] Garnett, R., Krishnamurthy, Y., Xiong, X., Schneider, J., & Mann, R. (2012). **Bayesian optimal active search and surveying**. arXiv preprint arXiv:1206.6406.

[3] Jiang, S., Malkomes, G., Converse, G., Shofner, A., Moseley, B., & Garnett, R. (2017, August). Efficient nonmyopic active search. In ICML 2017

[4] Jiang, S., Malkomes, G., Converse, G., Shofner, A., Moseley, B., & Garnett, R. **Efficient nonmyopic batch active search.** In NeurIPS 2018.

[5] González, J., Osborne, M. & Lawrence, N., 2016, May. **GLASSES: Relieving the myopia of Bayesian optimisation.** In Artificial Intelligence and Statistics

[6] Hasan Z. & Hidru D. Slide for Efficient nonmyopic batch active search. https://bayesopt .github.io/slides/2016/ContributedGarnett.pdf

[7] Jiang, S. Slide for Efficient nonmyopic batch active search. https://bayesopt.github.io/ slides/2016/ContributedGarnett.pdf

simple greedy one-step policy vs two-step look ahead:

one-step:

 $x_1 * = \operatorname{argmax}_{x_1} \mathbb{E}[u(\mathcal{D}_1)|x_1, \mathcal{D}_0] = \operatorname{right} \operatorname{point} \\ x_2 * = \operatorname{left} \operatorname{point} \\ \mathbb{E}(u(\mathcal{D}_2)) = \delta + \epsilon$

 $\mathbb E$

simple greedy one-step policy vs two-step look ahead:

one-step:

$$\mathbb{E}(u(\mathcal{D}_2)) = \delta + \epsilon$$

two-step(left):

$$\mathbb{E} [u(\mathcal{D}_{t}) \mid x_{t-1}, \mathcal{D}_{t-2}] = u(\mathcal{D}_{t-2}) + \\ \Pr(y_{t-1} = 1 \mid x_{t-1}, \mathcal{D}_{t-2}) + \\ \mathbb{E}_{y_{t-1}} [\max_{x_{t}} \Pr(y_{t} = 1 \mid x_{t}, \mathcal{D}_{t-1})]$$

$$[u(\mathcal{D}_{2})|x_{1}, \mathcal{D}_{0}] = u(\mathcal{D}_{0}) + Pr(y_{1} = 1|x_{1}, \mathcal{D}_{0}) + \\ \mathbb{E}_{y_{1}}[\max_{x_{2}}Pr(y_{2} = 1|x_{2}, \mathcal{D}_{1})] \\ = 0 + \epsilon + Pr(y_{1} = 0) * [\max_{x_{2}}Pr(y_{2} = 1|x_{2}, \mathcal{D}_{1})] + \\ Pr(y_{1} = 1) * [\max_{x_{2}}Pr(y_{2} = 1|x_{2}, \mathcal{D}_{1})] \\ = \epsilon + (1 - \epsilon) * \delta + \epsilon \times 1 \\ = 2\epsilon + (1 - \epsilon) \times \delta$$

simple greedy one-step policy vs two-step look ahead:

one-step:

$$\mathbb{E}(u(\mathcal{D}_2)) = \delta + \epsilon$$

two-step (left):

$$\mathbb{E}[u(\mathcal{D}_2)|x_1, \mathcal{D}_0] = 2\epsilon + (1-\epsilon) \times \delta$$
$$= \epsilon + \delta + \epsilon(1-\delta)$$

two-step (right):

$$\mathbb{E} \left[u(\mathcal{D}_{t}) \mid x_{t-1}, \mathcal{D}_{t-2} \right] = u(\mathcal{D}_{t-2}) + \\ \Pr(y_{t-1} = 1 \mid x_{t-1}, \mathcal{D}_{t-2}) + \\ \mathbb{E}_{y_{t-1}} \left[\max_{x_{t}} \Pr(y_{t} = 1 \mid x_{t}, \mathcal{D}_{t-1}) \right] \\ \mathbb{E} \left[u(\mathcal{D}_{2}) \mid x_{1}, \mathcal{D}_{0} \right] = u(\mathcal{D}_{0}) + \Pr(y_{1} = 1 \mid x_{1}, \mathcal{D}_{0}) + \\ \mathbb{E}_{y_{1}} \left[\max_{x_{2}} \Pr(y_{2} = 1 \mid x_{2}, \mathcal{D}_{1}) \right] \\ = 0 + \delta + \Pr(y_{1} = 0) * \left[\max_{x_{2}} \Pr(y_{2} = 1 \mid x_{2}, \mathcal{D}_{1}) \right] + \\ \Pr(y_{1} = 1) * \left[\max_{x_{2}} \Pr(y_{2} = 1 \mid x_{2}, \mathcal{D}_{1}) \right] \\ = \delta + (1 - \delta) * \epsilon + \delta \times \epsilon \\ = \epsilon + \delta$$

simple greedy one-step policy vs two-step look ahead:

one-step:

 $\mathbb{E}(u(\mathcal{D}_2)) = \delta + \epsilon$

two-step(left): $\mathbb{E}[u(\mathcal{D}_2)|x_1, \mathcal{D}_0] = 2\epsilon + (1-\epsilon) \times \delta$ $= \epsilon + \delta + \epsilon(1-\delta)$

two-step(right):

 $\mathbb{E}[u(\mathcal{D}_2)|x_1 \mathcal{D}_0] = \epsilon + \delta$