Efficient Nonmyopic Active Search

Jiang, Malkomes, Converse, Shofner, Moseley, Garnett. ICML 2017

Presented by Arghavan Modiri, Jingkang Wang, Jinman Zhao

CSC 2547, Oct 18th



Active Learning
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Supervised Learning
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Why active learning matters?

Collecting data is much cheaper than annotating them

we have large-scale unlabeled data

Labeling data is very difficult, time-consuming, or expensive

Active learning helps model learn more efficiently
(compared to random sampling)




Uncertainty Sampling

- Query examples that the learner are most uncertain about
(i.e., instances near the decision boundary of the model)

Binary: query the instance whose posterior probability of being positive is nearest 0.5
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400 instances sampled random sampling uncertainty sampling
from 2 class Gaussians 30 labeled instances 30 labeled instances
(accuracy=0.7) (accuracy=0.9)

o+ A argminm|Pr(y =1|=z,D) - 1/2| [Lewis & Gale, SIGIR'94]
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Uncertainty Sampling

For multiclass problems
least confidence
v = argmax 1 — Py(y|x)

X

A

§ = argmax, Py(y|x)
margin sampling
xy, = argmin Py (91 |x) — Py(2|x)

T
71 and 9, are the first and second most probable class labels

entropy
T = argmax — Z Py(yi|x) log Py(y;|x)




Other Query Strategies

Query-By-Committee (QBC)

maintain a committee for voting query candidates

Expected Model Change

Impart the greatest change to the current model

Expected Error Reduction

how much its generalization error is likely to be reduced

Variance Reduction

minimizing output variance

Density-Weighted Methods

modifying the input distribution and pick informative instances
(uncertain and representative)




Active Search

sequentially inspecting data to discover members of a rare,
desired class.




Active Search

sequentially inspecting data to discover members of a rare,
desired class.

What is the best policy to select between data points such that
we can find more of the target class in a given number of
queries?




Active Search

- Given a finite domain of elements X = {x;}
- targetset’ R C X
= budget ?

Goal: Maximizing the utility function in budget ?

where

D= {(z,y))} y 2 1{z € R}
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Optimal Bayesian Policy

- Assume we have a probabilistic classification model

that provides
Pr(y=1]|x,D)

- The optimal policy

T = argmax ]E[u(Dt) | xi,Di_l]
x, €X\D;i-1

How to solve above Equation?
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Optimal Bayesian Policy

Optimal Policy for the last query (2 = T ):

Intuition
There is no need to explore

The optimal decision should be greedy

Time step i =

[n - (t-1)] nodes are unlabeled

t

y=1

y=0

y=1

y=0

AR R
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Optimal Bayesian Policy

Optimal Policy for the last query (2 = T ):

Time stepi=t

Intuition [n - (t-1)] nodes are unlabeled

There is no need to explore

y=1

y=0

The optimal decision should be greedy

y=1

y=0

= Solving Bayesian Policy equation
confirms

y=1

y=0

y=1

O
O
O
O

y=0

E|u(Dy) | @, Di—1]= u(Ds—1) + Pr(ys = 1| 24, Dy_1)
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Optimal Bayesian Policy (Example)

last query for our example:
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Optimal Bayesian Policy (Example)

last query for our example:
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Optimal Bayesian Policy

Optimal Policy when two queries are left

(e=1t—1)
Time step i = t-1
= policy is not as trivial [n - (t-2)] nodes are
unlabeled

= the probability model changes after the
first choice
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Optimal Bayesian Policy

Optimal Policy when two queries are left

(t=1t—1)
Time step i = t-1
= policy is not as trivial [n - (t-2)] nodes are
= the probability model changes after the unlabeled
first choice

Solving Bayesian Policy equation

o<
.

y=0

E|u(Dy) | #1—1,Di—2] = u(Dy—2) +
Pr(y.—1 = 1| 2z4—1,Dr—2) +
E,,_, [rriaXPr(yt =1 It,Dt—l)]

(n-(t-2)) * 2 * (n-(t-1) * 2)
computation
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Optimal Bayesian Policy

Optimal Policy when two queries are left

(t=1t—1)
Time step i = t-1
= policy is not as trivial [n - (t-2)] nodes are
= the probability model changes after the unlabeled
first choice

Solving Bayesian Policy equation

(n-(t-2)) * 2 * (n-(t-1) * 2)
computation
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Optimal Bayesian Policy

Optimal Policy when two queries are left

(t=1t—1)
Time step i = t-1
= policy is not as trivial [n - (t-2)] nodes are
= the probability model changes after the unlabeled
first choice

Solving Bayesian Policy equation

o
U5

y=0

E[U(Dt) | xt—lypt—ﬂ = u(Di—2) +
Pr(y;—1 =12 1.D; o) + Exploratio

By [maxPr(ye = 1|2, D]

(n-(t-2)) * 2 * (n-(t-1) * 2)
computation
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Optimal Bayesian Policy (Example)

Two queries are left:
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Optimal Bayesian Policy (Example)

Two queries are left:

First step
choosing this
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Optimal Bayesian Policy (Example)

Two queries are left:

Second step
choosing this
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Optimal Bayesian Policy

Bayesian Policy equation (General Form)

E[U(Dt) | .Q?i,Di_l} = U(Di_l) —|—
Pr(y; = 1|2, Di—1) +

A\ 4
~~

exploitation, < 1

E,, {maxa;/ E[U(Dt \D;) | 2, Dlﬂ

A\ J/
"

exploration, < t—1

Time complexity: O ((2n)£)

- where £ is the lookahead Y =t — 1 + 1
= nis the total number of unlabeled point
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Optimal Bayesian Policy

Bayesian Policy equation (General Form)

E[U(Dt) | fEi, Di_1j| — U(D'L—l) _1|_
Pr(y; =1 |« 0D~ +

\ .

~~

exploitatie™ =+ 1

Eyi |VU‘" Y Llw\b \l)z) ‘ [B/,Di}i|

h — . — 2V >4

loration, < t—1

. ar \ 2
Time complexity: “C ((A 1) ;

- where /" the okenead? =t — 1+ 1
= nis the *otc \number of unlabeled point
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Hardness of Approximation

There is no polynomial-time active search policy with a
constant factor approximation ratio for optimizing the

expected utility.
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Myopic Approach

1-step ahead myopic

I';k — arg 1max ]E[U(DZ) |ZCZ', Di—l]

T
= 2-step ahead myopic

.fU;k — alrg mnax E[U(DZ+1)‘$Z, Di—l]

Lg
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Toy Example

I =10,1]?

= Target: all points within Euclidean distance 1/4 from either the center
or any corner of 1

1 — 1 .
0.8 . ‘ 0.8-.

0.6 - 0.6

0.4 ; 0.4 |

oy Q -
02 04 06 08 1 02 04 06 08 1
uncertainty

: 1-step optimal
sampling 27




Experiments (Active Search)

= Dataset: CiteSeer citation network (38079 nodes)

= Target: Papers appearing in NeurlPS (2198 in total, 5.2%)

= Features: extracted by PCA

200

number of targets found

150

100 A

90 -

3-step optimal
2-step optimal
1-step optimal
----- random

100 200 300 400 500
number of evaluations

Figure 3: Cumulative number of targets found during 1000
steps of several active querying schemes on the CiteSeer™
data. The dashed red line shows the expected performance
of random sampling.

1-step: 167 targets
2-step: 180 targets
3-step: 187 targets

6.5 times better than

random search
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Search-space pruning

= Pruning improves the search efficiency

= Still exponential

Table 1: The average time (in seconds) taken for one it-
eration of the /-step lookahead optimal search policy on
the CiteSeer™ data, for 1 < £ < 4. Some times are approxi-
mate. For reference, the one-step policy took an average of
2.24 x 1073 s per iteration.

pruning 0.228s 15.0s 745s
no pruning 166s  =146days =30500 years
speedup 731 842 x10°  1.29 x 10°
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Approximating Bayesian Optimal Policy

Reminder: Bayesian Optimal Policy

E[U(Dt) | CEi,Di_l] — ’U,(Dz'_l) +
Pr(y; =1| i, Di—1) +

Ky, [maxxz E[U(Dt \D;) | o, DZH

\ . 4
"~

exploration, < t—1
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Approximating Bayesian Optimal Policy

E[U(Dt) | Z’i,Dz‘_l] ~/ ’U,(Dz'_l) +
Pr(y; = 1| x;, Di—1) +

Ey, [Z:ﬁ—z Pr(y =1 vai)]

J/

WV
exploration, < t—1

assume that any remaining points, in our budget
will be selected simultaneously in one big batch
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Approximating Bayesian Optimal Policy

We will call this policy efficient nonmyopic search (ENS).

E[U(Dt) | Z’i,Dz‘_l] ~ ’U,(Dz'_l) -+
Pr(y; =1 |z, Di—1) +

Ey, [Z:ﬁ—z Pr(y =1 vai)]

J/

WV
exploration, < t—1

Time complexity: O(n? log n)
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ENS (Example)

at ith query ( ¢ — 72 nodes are left to be labelled)
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ENS (Example)

at ith query ( ¢ — 72 nodes are left to be labelled)

Until we find the U with maximum utility...
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Efficient nonmyopic search (ENS)

When does ENS become the exact Bayesian optimal policy?
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Efficient nonmyopic search (ENS)

When does ENS become the exact Bayesian optimal policy?

= if after observing D; , the labels of all remaining unlabeled points
are conditionally independent
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Nonmyopic Behavior

I = 10,1]?

=  Target: ENS:
all points within Euclidean
distance 1/4 from either the

center or any corner of [

= Budget: 200 2-step

lookhead:

first 100 points last 100 points
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number of targets found
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Figure 2: The learning curve of our policy and other base-
lines on the CiteSeer” dataset.
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CiteSeer” data

query number

policy 100 300 500 700 900
RG 19.7 600 104 140 176
IMS 263 86.3 147 214 281
one-step 25.5 80.5 141 209 273
two-step 249 89.8 155 220 287
ENS-900 259 943 163 239 308
ENS-700 28.0 105 188 259
ENS-500 28.7 112 189

ENS-300 264 105

ENS-100  30.7
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Bayesian optimal policy and myopic methods (when lookahead
step is large) are sample inefficient

Assume the conditional independence of unlabelled data (ENS)

= limited performance when budget is very small

Can not deal with the continuous search space

Difficult to generalize other more general setting

= Bayesian Optimization, Multi-bandits, Reinforcement
Learning
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= Optimal Bayesian Policy (intractable)

= Myopic approach for approximating the optimal policy

Less-myopic approximations perform better

= Efficient nonmyopic search (ENS) improves the search
efficiency but rely on strong assumptions
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Related Work

1) ENS in batch mode (query a batch of points at a time)
a) efficiency improvement
b) theoretical guarantee of performance - not that worse compared to
query one at a time (Jiang et al., 2018)

1) Bayesian Optimization (BO)
a) AS can be seen as a special case of BO - with binary observations
and cumulative reward
b) Non-myopic policies for BO in the regression setting (Ling et al., 2016)
c) ENS is similar to GLASS algorithm (Gonzalez et al., 2016)

1) Multi-armed bandit

a) electing an item can understood as “pulling an arm”
b) items are correlated and cannot be played twice
c) ENS is similar to knowledge gradient policy (Frazier et al., 2008)
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Appendix: Myopic Approach

simple greedy one-step policy vs two-step look ahead:

one-step:
—
| € r1* = argmax, Elu(D;)|z1, Dy| = right point
~
| xox = left point
() o (D) =5+
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Appendix: Myopic Approach

simple greedy one-step policy vs two-step look ahead:

one-step:
_
(e E(u(Dz2)) =4 + ¢
/;5\ two-step(left):
E[U(Dt) | xt—lapt—2] = u(Di—2) +
Pr(yi—1 =1]|z4-1,Di—2) +
(1) By, , [maxPr(y = 1|z, D))

E[u(Dz)|x1, Do) = u(Do) + Pr(y1 = 1|z1, Do)+
E,, [max,, Pr(y, = 1|z, D;)]
=0+ €+ Pr(yl =0) *x [max,, Pr(ys = 1|z2, D)+
Pr(yl = 1) % [max,, Pr(ys = 1|zq, D1)]
=e+(l—€)*xd+ex1
=2+ (l—€)x$é
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Appendix: Myopic Approach

simple greedy one-step policy vs two-step look ahead:

. one-step:
(e E(u(Dy)) =0 + ¢

" two-step (left):

J\ E[u(Dy)|1, Do) = 2¢ + (1 - €) x &
( (1) s

two-step (right):
E{u(Dy) | @i—1,Di—2] = u(Dy—2) +
Pr(yi—1 =1 | x4—1,Di_2) +
Ey,_. [I%%XPr(yt =1| xtth—l)]

Elu(D2)|z1, Do] = u(Do) + Pr(yr = 1|z1, Do)+
E,, [max,, Pr(ys = 1|z, Dy)]
=040+ Pr(yl = 0) * [max,, Pr(ys = 1|xe, D1)]+
Pr(yl = 1) % [max,, Pr(ys = 1|3, Dy)]
=0+ (1—0)*xe+dxe
=€e+9
48
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Appendix: Myopic Approach

simple greedy one-step policy vs@ep look a@

one-step:

(¢ E(u(Dy)) = 6 + ¢

! ,‘\5 two-step(left):
[’LL(DQ”CEl,Do] = 2¢€ + (]. — E) X 0

(1) — e+ 6+ ¢e(l—6)

two-step(right):

Elu(Ds)|x1 Dyl =€+ 9
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