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Beam Search

Greedy Search: Always go to top 1 scored sequence (seq2seq)

Beam Search: Maintain the top K scored sequences (this paper)
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Seq2Seq Train and Test Issues
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o Dtrain(Vely1.t-1) = Softmax(decoder(yy.¢—1))

o DtestVelV1.t-1) =Softmax(decoder(J1.4-1))

Sentence level

o Dtrain(V1.t = Y1:t) = {:1 p(V: = ¥Vt |Y1:6-1)
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Seq2Seq Train and Test Issues (continued)

Training Loss
o Maximize pyainF1:e = y1:0) = [lt=12@e = Ve [V1:6-1)
o Minimize Negative Log Likelithood (NLL)
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NLL = —In t—1p(yt = Ve |y1:6-1) = —z In(p(Pe = ¥e 1y1:6-1))
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Testing Evaluation
e Sequence level metrics like BLEU



Seq2Seq Train and Test Issues (continued)

Training Loss

o Maximize pirgin(J1:t = Y1:t) = Z:1 pVe = VYt |¥1:6-1)
o Minimize Negative Log Likelithood (NLL)
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NLL = —=In t_lp()A’t =Yt |V1:6-1) = —z In(p(Pe = ye 1¥1:6-1))
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Testing Evaluation \
e Sequence level metrics like BLEU word level loss
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Optimization Approach

1. Exposure Bias: model 1s not exposed at its errors at training

* Train with beam search
2. Loss-Evaluation Mismatch: loss on word level, evaluation on
sequence

* Define score for sequence

* Define search-based sequence loss



Sequence Score
e score(y1.7) = decoder(t)

* Hard constraint score(§;.;) = —©

Constrained Beam Search Optimization(ConBSO)

* Sequence with K-th ranked score y;.,
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Search-Based Sequence Loss

£(0) = ZA

When 1 + score(J;. t)) — score(yy) > 0:

* The gold sequence y;.+ doesn’t have a K highest score
* Margin Violation
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Search-Based Sequence Loss (continued)

L(B) = 2 A 371( t) [1+ Score(yl(f?) — score(y;)]

852

* scaling factor of penalizing the prediction

* = | when margin violation; = 0 when no margin violation

Goals:

* When t<T, avoid margin violation, force the gold sequence to
be top K

* When t=T, force the gold sequence to be top 1, so set K =1



Backpropagation Through Time (BPTT)

e Recall loss function:
L(B) =);A (A( )) [1+ score(¥;. t)) — score(y;)]

* When margin violation, backpropagate for score (}71(5)) and
score(y;):0(T)

A margin Violation at each time step° Worst case O(T?)
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Learning as Search Optimization (LaSO)

* Normal case: update beam with y( )

* Margin violation case: update beam with y;.; instead
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Each incorrect sequence 1s an extension of the partial gold sequence
Only maintain two sequences 0(2T) = O(T)

[ my cat —> is —»| eating fish —»| happily
smile —> say —> jump : search | search




Experiment on Word Ordering

fish cat eat -> cat eat fish
Word Ordering (BLEU)

Features Kie=1 Ki=5 K;=10
- 2seq 25.2 29.8 31.0
* Non-exhaustive search >¢q
BSO 28.0 33.2 34.3
e Hard constraint ConBSO 28.6 34.3 34.5
. LSTM-LM 154 - 26.8
Settlngs Table 1: Word ordering. BLEU Scores of seq2seq, BSO,
e Dataset: PTB dataset constrained BSO, and a vanilla LSTM language model
. (from Schmaltz et al, 2016). All experiments above have
* Metrics: BLEU Ky =6.

[Image credit: Sequence-to-Sequence Learning as Beam Search Optimization, Wiseman et al., EMNLP’ 16]

« A(PX,) scaler: 0/1



Conclusion

Alleviate the 1ssues of seq2seq

e Exposure Bias: Beam Search

e Loss-Evaluation Mismatch: sequence level cost function with
O(T) BPTT with hard constraint

A variant of seq2seq with beam search training scheme
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