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Complex Problems

@ We need some kind of training signal for our ML model

@ What happens if our problem is too complex for us to have either
labeled data or a proxy for a reward?

@ What if we are not able to even easily evaluate the answer given by
the model?
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Example of Complex Task Decomposition

Comparing two designs of a Transit System

@ Could train an Al to emulate human judgements but those are often
quite bad

@ Can try to collect information about the transit systems but this will
have a ten year delay.

@ It is easy for humans to define sub-tasks that are informative (not
necessarily efficient) for the main task:
» Compare the cost of the two designs
» Compare the usefulness of the designs
» Compare the potential risks associated with the designs
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Decomposing the Decomposition

@ Compare the cost of the two designs:
» Estimate the likely construction cost:

* |dentify comparable projects and estimate their costs.
* Figure out how this project differs and how it's cost is likely to differ.

» Compare the maintenance costs over time
* |dentify categories of maintenance cost and estimate each of them
separately.
* Compare maintenance for similar projects.
* .
o Compare the usefulness of the designs:
> .

* L.

Michal Malyska Shawn S. Unger (University ¢ November 27, 2019 4/24



Supervising Strong Learners by Amplifying Weak Experts
Paul Christiano, Buck Shlegeris, Dario Amodei

Paper Overview:

@ The Goal is to provide an algorithm to train on tasks for which signals
we do not know how to evaluate
@ Propose a framework in which they decompose tasks into simpler
tasks for which we have a human or algorithmic training signal, in
order to build up a training signal to solve the original more complex
task
» Kinda like Karate Kid, you might be better of being taught how to do
a few moves which are simple on their own, and then you can learn
how to put them all together and kick some butt.
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Basic Problem

Table 1: Example problems which require different kinds of training signal.

Training signal: Algorithmic Human Beyond human
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Goal

© Allow for tasks that can be solved using Supervised and
Reinforcement Learning to be greater then current limitations allows

@ Avoid using proxy rewards which can lead to pathological limitations
to solve problems

» Short term behaviour as Proxy for long term effects
> Related rewards that are calculable as proxy for actual goal of task
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Example

Example Implementation for Economic Policy
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Thinking about the Problem

© The Context
» Usually complex questions come from complex contexts
» However, if we split down question to subset questions with their our
contexts, might be able to more easily solve those questions referring
only to the small contexts that they correspond to

@ Solving Problems
» Solving problems within context sometimes just means understanding it
» Hence we can change the problem solver to a two step approach
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Proposed Approach

@ "Our goal is for X to learn the goal at the same time that it learns to
behave competently. This is in contrast with the alternative approach
of specifying a reward function and then training a capable agent to
maximize that reward function.”

Michal Malyska Shawn S. Unger (University ¢ November 27, 2019 10 /24



Algorithm
Training H’
O Sample Q ~ D
@ Run Amplify"(X) by doing the following for i € {1,..., n}
@ H gets Q; from @
o A =X(Q)
then A = H(Al,...,Ak) toget 7 = (Q, Ql,...,Qk,Al,...,Ak,A)
© Train H' to imitate H
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Figure 1: Schematic of our Iterated Amplification implementation.
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Algorithm
Training X
O Sample @ ~ D
@ Run Amplify" (X) by doing the following for i € {1,...,n}
@ H gets Q; from @
e A =X(Q)

then A:H/(Al,...,Ak) to getT:(Q,Ql,...,Qk,Al,...,Ak,A)

© Let H' define A= H'(A1,...,Ax) and collect (Q, A)
© Train X on (Q, A)
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Figure 1: Schematic of our Iterated Amplification implementation.
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Experiment Results
Present Approaches made in the paper
@ Given a permutation o : {1,...,64} — {1,...,64}, compute o*(x) for
k up to 64.
@ Given f: {1,...,8}%> — {1,...,8} and a sequence of 64 assignments of
the form x := 3 or x := f(y, z), evaluate a particular variable.
© Given a function f : {0,1}® — {—1,0,1}, answer questions of the
form “What is the sum of f(x) over all x matching the wildcard
expression 0 %1 % *x?"
@ Given a directed graph with 64 vertices and 128 edges, find the
distance from node s to t.
© Given a rooted forest on 64 vertices, find the root of the tree
containing a vertex x.
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Experiment Results

Permutation powering Sequential assignments Wildcard search Shortest path
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Experiment Results

o lterated Amplification is able to solve these tasks effectively with at

worst a modest slowdown, achieving our main goal

@ Some Differences in Requirement

Amplification ‘ Supervised Learner
- Tens of thousands of - Tens of millions of
of training examples of training examples

- "Modestly” more training steps
- Twice as much computation
per question

Permutation powering Sequential Wildcard search Shortest path Union find
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Experiment Architecture

The entire idea behind the architecture is to
o Create and embeding of the various facts and questions asked

@ Use a encoder-decoder architecture with self-attention to solve the
simplified questions

@ Use human-predictor H as also a decoder + the ability to copy
solutions from previous levels of the network.
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What they got right

@ Huge step forward in a relatively new field. Very good introduction to
the problem.

o Establishes a framework for solving "beyond human scale” complex
tasks.

@ Introduces the algorithm starting with design choices that then guide
implementation.

@ Framework for involving a human in the training process of an
algorithm.
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Limitations

Theory and Experiments:
@ Introduces a very general framework for solving complex problems but
only implements a simplified version of it.

@ Code not available anywhere with description not detailed enough to
easily reproduce it.

@ Only considers X as starting from a blank slate.

@ Assumes tasks will have a meaningful decomposition within the
Question Distribution.
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Related Work

Expert lteration

@ Borrows from Daniel Kahneman's idea of System 1 (Intuition) and
System 2 (Deliberate evaluation)

@ Use an apprentice network to quickly determine plausible actions and
use the expert system to further refine guesses

@ A refinement of the idea of imitation learning

o Amplify™ is a very similar idea - expert guides plausible expansions
and the learner tries to aid the expert in answering them. The major
difference is lack of outside reward function.

Michal Malyska Shawn S. Unger (University ¢ November 27, 2019 19 /24



Related Work

Scalable agent alignment via reward modeling:a research direction

@ Attempts to solve the agent alignment problem: How do we make
sure that the model we are training is behaves in accordance with our
intentions 7

@ Discusses key challenges we expect with scaling models to complex
domains

@ The approach is more or less Iterated Amplification with Reward
Modelling instead of supervised learning for the model X
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Scalable agent alignment via reward modeling:a research

direction
Reward Modelling:

@ Separates learning the reward function from user feedback (1) and
actually maximizing it (2)

@ (1) is called the "What", (2) is called the "How"

reward model

reward

‘ agent ‘

feedback
user
trajectoties
observation
environment
action
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Scalable agent alignment via reward modeling:a research
direction

The conditions we require our approach to fulfill:

@ Scalability - Alignment becomes much more important as agents
reach superhuman performance and any solution that fails to scale
together with our agents can only serve as a stopgap.

@ Economics - To defuse incentives for the creation of unaligned
agents, training aligned agents should not face drawbacks in cost and
performance compared to other approaches totraining agents.

@ Pragmatic - Not supposed to be a solution to all safety problems.
Instead, aimed at a minimal viable product that suffices to achieve
agent alignment in practice.
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Scalable agent alignment via reward modeling:a research
direction

Given the two main assumptions:

@ We can learn user intentions to a sufficiently high accuracy. In other
words, with enough model capacity and training data and algorithms
we can extract the intentions.

@ For many tasks we want to solve, evaluation of outcomes is easier
than producing the correct behavior. E.g. It is a lot easier to yell at a
TV screen than to run a basketball team.
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Other related ideas and differences

@ Inverse reinforcement learning - We don’t intend to just imitate
human choices. This makes it possible to solve more challenging
problems.

@ Algorithmic Learning - We don't have access to ground truth labels.

@ Recursive model architectures - The learned model doesn't have a
recursive structure. The only recursion is generated during training.

o Debating - Each sub-question is answered by an independent copy of
X trained by Amplify"(X)
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