CS 188: Artificial Intelligence

Bayes’ Nets: Independence

Instructors: Pieter Abbeel & Dan Klein --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
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Probability Recap

Conditional probability P(x|y) = Pz, y)
P(y)
Product rule P(z,y) = P(z|y)P(y)
Chain rule P(X1,X5,...Xn) = P(X1)P(X2|X1)P(X3|X1,X2)...

n
— H P(Xi|X17°"7Xi—1)

=1

X, Y independent if and only if: Vz,y: P(z,y) = P(x)P(y)

—_—

X and Y are conditionally independent given Z if and only if:

Va,y,z : P(z,y]2) = P(z[z)P(y|2)

X1Y
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Bayes’ Nets

T
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= A Bayes’ netis an
efficient encoding
of a probabilistic
model of a domain

‘ rivingHist

/
= Questions we can ask: )

* Inference: given a fixed BN, whatis P(X | e)?

= Representation: given a BN graph, what kinds of distributions can it encode?

" Modeling: what BN is most appropriate for a given domain?


bmo
Pencil

bmo
Pencil


Bayes’ Net Semantics

= A directed, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents’ values

P(X|ay...an)
= Bayes’ netsimplicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

mn
P(z1,22,...2n) = || P(z;|parents(X;))

=1
PEEm———e
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B P(B)

+b | 0.001

-b | 0.999

A J P(J|A)
+a | +j 0.9
+a - 0.1
-a +j 0.05
-a - 0.95
P(+b, —e, 1

Example: Alarm Network

E P(E)

+e | 0.002

-e | 0.998

A M P(M|A)
+a | +m 0.7
+3a -m 0.3
-a +m 0.01
-a -m 0.99

B | E| A | PA|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
b | +e | -a 0.71
-b | -e | +a 0.001
-b | -e | -a 0.999
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Example: Alarm Network

B | P(B) E | P(E)
+b | 0.001 +e | 0.002
b | 0.999 e | 0.998

Al ) | PUIA) A | M | P(M|A)

+a | +] 0.9 +a | +m 0.7‘_ B E | A | PAIBE

+a | 0.1 ta | -m 0.3 +b | +e | +a 0.95

a | 4 0.05 2 | +m | 001 +b | +e | -a 0.05

a | - | 095 a | -m | 099 el e

+b | -e | -a 0.06

. -b | +te | +a 0.29

P( | b’ €, | CL,;], _I_Ln) — -b | +e | -a 0.71
P(+b)P(—e)P(+a|+ b, —e)P(—j| +a)P(+m|+a) = | b | e |+ | o000
-b | -e | -a 0.999

0.001 % 0.998 x 0.94 x 0.1 X 0.7
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Zr O\ \'a\/\t M SJrorLf_s‘%

"L K. Size of a Bayes” Net

‘™M~ Oxm\[

= How bigis a joint distribution over N
Boolean variables?

2N |

= How bigis an N-node net if nodes
have up to k parents?

O(N * 2k+1)

= Both give you the power to calculate

p(X17X27 <. Xn)

= BNs: Huge space savings!
= Also easier to elicit local CPTs

= Also faster to answer queries (coming)
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Bayes’ Nets

JRepresentation
= Conditional Independences
" Probabilistic Inference

" Learning Bayes’ Nets from Data



Conditional Independence

X and Y are independent if

Ve,y P(z,y) = P(z)P(y) —--= X1Y

X and Y are conditionally independent given Z

Vz,y,z2 P(z,y|z) = P(z|2)P(ylz) —--=> X 1Y|[Z

(Conditional) independence is a property of a distribution

Example:

Alarm AL Fire|Smoke
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Bayes Nets: Assumptions

= Assumptions we are required to make to define the
Bayes net when given the graph:

P(x;lxy - - x;_1) = P(x;|parents(X;))

= Beyond above “chain rule > Bayes net” conditional
independence assumptions

= Often additional conditional independences

= They can be read off the graph

T e —

" |mportant for modeling: understand assumptions made

when choosing a Bayes net graph
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Example

OnOVR0R0

= Conditional independence assumptions directly from simplifications in chain rule:

P(x-\‘ ><_\.\S: @ (X'\\ P o] S (x',\

= Additional implied conditional independence assumptions?
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Independence in a BN

" |mportant question about a BN:
= Are two nodes independent given certain evidence?

= |f yes, can prove using algebra (tedious in general)
. = |f no, can prove with a counter example

Nososo

——

= Question: are X and Z necessarily independent?

= Answer: no. Example: low pressure causes rain, which causes traffic.
= X can influence Z, Z can influence X (via Y)

= Addendum: they could be independent: how?
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D-separation: Outline

= Study independence properties for triples
= Analyze complex cases in terms of member triples

» D-separation: a condition / algorithm for answering such
gueries
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Causal Chains

= This configuration is a “causal chain”

R \:-;!
TR

\\
Z: Traffic

Y: Rain

X: Low pressure

P(xz,y,z) = P(x)P(y|z)P(z]y)

= Guaranteed X independentof Z? No!

One example set of CPTs for which X is not
mdependent of Z is sufficient to show this
independence is not guaranteed.

= Example:

= Low pressure causes rain causes traffic,
high pressure causes no rain causes no
traffic

®" |n numbers:

P(+y | +x)=1,P(-y | -x)=1,
P(+z | +y)=1,P(-z|-y)=1



O—0——=O Causal Chains

= This configuration is a “causal chain” : Guaranteed X independent of Z given Y?

) ) j Pz = el

_ P(x)P(ylz) P(z]y)
.@.M PP
X: Low pressure Y: Rain Z: Traffic %‘/ﬂ — P(Z|y)

Yes!

P(z,y,z) = P@)P@)P(zlg) = Evidence along the chain “blocks” the
@( g’—*’@‘ ;YCD influence
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Common Cause

= This configuration is a “common cause” = Guaranteed X independent of Z? No!
Y: Project Project = One example set of CPTs for which X is not

independent of Z is sufficient to show this
independence is not guaranteed.

_— Due!
due

= Example:

= Project due causes both forums busy
and lab full

®" |n numbers:

X: Forums
= busy P(+x | +y)=1,P(x|-y)=1,
P(+z | +y)=1,P(-z|y)=1

P(xz,y,z) = P(y)P(z|y)P(z|y)
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Common Cause

= This configuration is a “common cause” = Guaranteed X and Z independent given Y?

. i Project
Y: Project DUJe P(:U, Y, Z)

due % P(zlx,y) = Ple.v)
[g I _ Py PCy) P(=ly)

N P(y) P(zly)
S

é = P(zly)
B2 | Z: Lab ful
é? . Yes!
P(x,y,z) = P(y)P(x|y)P(z|y) = QObserving the cause blocks influence
between effects.

X: Forums
busy


bmo
Pencil

bmo
Pencil


- Common Effect

= Last configuration: two causesofone ® Are Xand Y independent? \ N \,\;V\O

effect (v-structures) = Yes: the ballgame and the rain cause traffic, but

. they are not correlated
X: Raining Y: Ballgame

= Still need to prove they must be (try it!)

= Are Xand Y independent given Z?

@ @ }> = No: seeing traffic puts the rain and the ballgame in
\/

ﬁ% competition as explanation.
Z: Traffic ‘

By

This is backwards from the other cases

= QObserving an effect activates influence between

C 0 \ AG/\h possible causes.
CAPloninain g
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The General Case




The General Case

" General question: in a given BN, are two variables independent
(given evidence)?

= Solution: analyze the graph

= Any complex example can be broken
into repetitions of the three canonical cases




Reachability

= Recipe: shade evidence nodes, look G
for paths in the resulting graph

= Attempt 1: if two nodes are connected e e
by an undirected path not blocked by
a shaded node, they are conditionally
independent

= Almost works, but not quite
= Where does it break?

= Answer: the v-structure at T doesn’t count
as a link in a path unless “active”
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2O ——=2) Active [ Inactive Paths

Bloc)we \6 C\xe A

= Question: Are X and Y conditionally independent given  Active Triples Inactive Triples

evidence variables {Z}? diveeide L —
" Yes, ifXandY‘Me_d" by Z “ O—PO—P@

= Consider all (undirected) paths from X to Y

» No active paths = independence!
/5 X

= A pathis active if each triple is active:
= Causal chain A— B — C where B is unobserved elther direction)
= Common cause A < B — C where B is unobserved
= Common effect (aka v-structure)
A — B < C where B or one of its descendents is observed

= All it takes to block a path is a single inactive segment
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D-Separation

= Query: XZ 2l X]‘{Xkly 7an} ?

= Check all (undirected!) paths between X; and X

= |f one or more active, then independence not guaranteed

————

X; XX { Xkys oo, X, }

= Otherwise (i.e. if all paths are inactive),

then independence is guaranteed

—

Xi WL Xi{ X,y ooy Xk, }
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Example

R1 B Yes
R 1l B|T

R B|T'
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Example

= Variables:
= R: Raining
= T: Traffic
J = D: Roof drips

_—

) = S:I'm sad
A

" Questions:
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Structure Implications

= Given a Bayes net structure, can run d-
separation algorithm to build a complete list of
conditional independences that are necessarily
true of the form

Xi L Xi{ Xkyyes Xk, }

e ————

" This list determines the set of probability
distributions that can be represented

pp————

e __—
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Computing All Independences

MPUTE ALL THE
C\ﬁDEPE\\I DENCES!

S
5
hel
pes



Topology Limits Distributions

(X LY, X1 Z,Y 1 Z,

(X1 Z|Y}
XUZ|Y,XULY|ZYLZ|X}

Given some graph topology
G, only certain joint

distributions can be @

encoded ® @

The graph structure
guarantees certain
(conditional) independences

(There might be more
independence)

Adding arcs increases the {}
set of distributions, but has
several costs

Full conditioning can encode
any distribution

PP
5P &P
PP PP



Bayes Nets Representation Summary

= Bayes nets compactly encode joint distributions

j N \/\ L_,ct \/\:o A@\
Guaranteed independencies of distributions can be
deduced from BN graph structure

= D-separation gives precise conditional independence
guarantees from graph alone

= ABayes net s jointdistribution may have further
(conditional) independence that is not detectable until
you inspect its specific distribution
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Bayes’ Nets

JRepresentation
JConditionaI Independences

» Probabilistic Inference
" Enumeration (exact, exponential complexity)
= Variable elimination (exact, worst-case
exponential complexity, often better)
" Probabilistic inference is NP-complete
» Sampling (approximate)

= Learning Bayes’ Nets from Data





