
Week 2  1/2 Decision Theory
Motivation: How to make decisions?
Why do we care about probabilities in the first place? 
Answer: They help us make decisions.

Pascal, 1670 When faced with a choice of actions, you should:

 Determine the value (goodness) of all possible outcomes. 

 Dind the probability of each outcome under each action. 

 Choose the action with the highest expected value: 

V (o) ∀o

p(o|a) ∀o∀a

\argmaxaE𝕡(𝕠|𝕒)] [V (o)]
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Example:

I think I might have a bacterial infection. Should I

 Do nothing,
 Take penicillin,
 Take more effective but toxic last-line antibiotics?

Outcome value

No infection, no toxins. 0 days sick

Infection, no toxins. 5 days sick

No infection, but toxins. 1 day sick

Infection and toxins. 8 days sick

P(outcome given action): Nothing Penicillin Last-line

No infection, no toxins. 0.1 0.9 0

Infection, no toxins. 0.9 0.1 0

No infection, toxins. 0 0 0.99

Infection and toxins. 0 0 0.01

Total 1 1 1

 Do nothing: 0.9  5  4.5 expected days sick.
 Take penicillin 0.1  5  0.5 expected days sick.
 Take toxic last-line antibiotics: 0.99 1  0.01 8  1.07 expected days sick.
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Objections:
A few common objections to this framework:

Objection 1 I don't care about the average outcome, somes outcomes are smply unacceptable.

Answer: You can't guarantee anything, you can only make probabilities small.

Objection 2 You can't compare the pain of being sick to the cost of medicine in dollars.

Answer: We have to.

The World Health Organization estimated the relative quality people assigned to their own lives under different
disabilities:

Condition Life discount factor

Dementia 0.666

Blindness 0.594

Schizophrenia 0.528

AIDS, not on ART 0.505

Burns 20%60% of body 0.441

Fractured femur 0.372

Moderate depression episode 0.350

Amputation of foot 0.300

Deafness 0.229

Infertility 0.180

Amputation of finger 0.102
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Condition Life discount factor

Lower back pain 0.061

Objection 3 It's computationally expensive to compute conditional probabilities and expectations over all possible
outcomes.

Answer: Agreed!

Where did  come from? 
We can always make the model more detailed to include more information.

Probabilities let us make informed decision to make our lives better.

P( outcome | action )
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Example: Cancer screening.

 is the set of pixel intensities in the x-ray image. 
 represents the presence of cancer, class , or absence of cancer, class .

Our belief after seeing the x-ray is given by:

If our goal were simply to make as few misclassifications as possible, we could minimize the expected number of mistakes
we'll make.

But a false positve usually has a much different cost than a false negative.

x

c C1 C2

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
   Bayes’ rule.
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### Expected loss

We want a loss function to measure of loss of the decisions under each state of the world.

Suppose that for some , the true class is , but we assign  to class . Then we define the loss incurred to be 
.

Here's an example:

Thus the expected loss is given by

Goal is to choose regions  as to minimize expected loss.

x Ck x Cj

L(k, j)

E[L] = ∑
k

∑
j

∫
Rj

L(k, j) p(x, Ck)dx

Rj
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Here's roughly what the conditional distribution looks like for this example: 

Sometimes you don’t have to make a decision and can take a third option.

In the above figure, the blue region corresponds to : the sample comes from class  but we classified as .

Therefore, we want to minimize

Define  and notice that . Then, the expected loss is equal to

is equivalent to choosing

We can also you the product rule  and reduce the problem to:

L(1, 2) C1 C2

E[L] =∑
k

∑
j

∫
Rj

L(k, j) p(x, Ck)dx

=∑
j

∫
Rj

∑
k

L(k, j) p(x, Ck)dx.

gj(x) = ∑k L(k, j) p(x, Ck) gj(x) ≥ 0

E[L] =∑
j

∫
Rj

gj(x)dx

Rj = {x  :  gj(x) < gk(x)  for all  k ≠ j}.

p(x, C1) = p(C1|x)p(x)
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Find regions  such that the following is minimized:

That is

Rj

∑
k

L(k, j) p(Ck|x) ∀j

Rj = {x  : ∑
k

L(k, j) p(Ck|x) < ∑
k

L(k, i) p(Ck|x)  for all  i ≠ j}.
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## Tutorial: Loss functions for regression

So far, we have discussed decision theory in the context of classification. We will briefly extend this for the regression
setup as well. Now we consider an input/target setup  where the target (output) is continuous , and their joint
density is given by .

Instead of trying to find decision regions, this time we try to find a regression function  which maps inputs to the
outputs. We choose a loss function  between the regression function  and the target  to assess the quality of our
estimate, i.e., .

The expected loss in this case,

What is the best regression function  that minimizes the expected loss?

Let's choose the loss function as the squared error loss to simplify things a bit, i.e. .

The last step follows since

since the term in the braces is

(x, t) t ∈ R

p(x, t)

y(x) ≈ t

L y(x) t

L = L(y(x), t)

E[L] = ∫ ∫ L(y(x), t)p(x, t)dxdt.

y(x)

L(y(x), t) = (y(x) − t)2

E[L] =∫ ∫ (y(x) − t)2p(x, t)dxdt

=∫ ∫ (y(x) − E[t|x] + E[t|x] − t)2p(x, t)dxdt

=∫ ∫ (y(x) − E[t|x])2p(x, t)dxdt + ∫ ∫ (E[t|x] − t)2p(x, t)dxdt

∫ ∫ (y(x) − E[t|x])(E[t|x] − t)p(x, t)dxdt

= ∫ ∫ (y(x) − E[t|x])(E[t|x] − t)p(t|x)p(x)dxdt

= ∫ (y(x) − E[t|x]){∫ (E[t|x] − t)p(t|x)dt}p(x)dx = 0
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We showed that the expected loss is given by the sum of two non-negative terms

The second term does not depend on  thus choosing the best regression function  is equivalent to minimizing the
first term on the right hand side. Thus, we get

The second term is the expectation of the conditional variance of . It represents the intrinsic variability of the target
data and can be regarded as noise.

∫ (E[t|x] − t)p(t|x)dt = E[t|x] − E[t|x] = 0.

E[L] = ∫ ∫ (y(x) − E[t|x])2p(x, t)dxdt + ∫ ∫ (E[t|x] − t)2p(x, t)dxdt.

y(x) y(x)

y(x) = E[t|x].

t|x
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## Summary

Depending on the application, one needs to choose an appropriate loss function.
Loss function can significantly change the optimal decision rule.
In case of regression, one can find the optimal map between  and  if one knows the conditional distribution . The
optimal map under a squared loss is the conditional expectation .

x t t|x

E[t|x]




