
Week 2  1/2 Decision Theory
Suggested Reading

PRML, Section 1.5

Motivation: How to make decisions?
Why do we care about probabilities in the first place? 
Answer: They help us make decisions. In some senses, making better decisions / actions is the only reason to ever think.

Pascal, 1670 When faced with a choice of actions, you should:

 Determine the value (goodness) of all possible outcomes.  
This is subjective and usually hard to determine, but usually only the order of magnitude matters. If you get it a little
wrong, no big deal)

 Dind the probability of each outcome under each action.  
That's what this course can help with)

 Choose the action with the highest expected value: 

Example:

I think I might have a bacterial infection. Should I

 Do nothing,
 Take penicillin,
 Take more effective but toxic last-line antibiotics?

First, we list possible outcomes and their values:

V (o) ∀o

p(o|a) ∀o∀a

\argmaxaE𝕡(𝕠|𝕒)] [V (o)]



Outcome valueOutcome value

No infection, no toxins. 0 days sick

Infection, no toxins. 5 days sick

No infection, but toxins. 1 day sick

Infection and toxins. 8 days sick

Second, we need the probability of each outcome under each possible action:

P(outcome given action): Nothing Penicillin Last-line

No infection, no toxins. 0.1 0.9 0

Infection, no toxins. 0.9 0.1 0

No infection, toxins. 0 0 0.99

Infection and toxins. 0 0 0.01

Total 1 1 1

Third, for each action we compute the sum of all values times their probability, ignoring all zeros:

 Do nothing: 0.9  5  4.5 expected days sick.
 Take penicillin 0.1  5  0.5 expected days sick.
 Take toxic last-line antibiotics: 0.99 1  0.01 8  1.07 expected days sick.

Option with lowest expected number of days sick: penicillin.

Objections:
A few common objections to this framework:



Objection 1 I don't care about the average outcome, somes outcomes are smply unacceptable. I want to make sure my
plane never crashes, or my bridge never falls.

Answer: You can't guarantee anything, you can only make probabilities small. So you have to assign values to
probabilities of outcomes, and the only coherent way to do this is linearly. I.e. twice the probability = twice as bad. If
someone dying is really bad, just give it a really high negative utility. But you might have to trade some chances of deaths
vs. others.

Objection 2 You can't compare the pain of being sick to the cost of medicine in dollars.

Answer: We have to. That is, we usually have to make tradeoffs, and so we have to compare different types of outcome
on the same scale one way or another. We should be explicit about what we value so that we can discuss it and sanity-
check it.

The World Health Organization estimated the relative quality people assigned to their own lives under different
disabilities:

Condition Life discount factor

Dementia 0.666

Blindness 0.594

Schizophrenia 0.528

AIDS, not on ART 0.505

Burns 20%60% of body 0.441

Fractured femur 0.372

Moderate depression episode 0.350

Amputation of foot 0.300

Deafness 0.229

Infertility 0.180



Condition Life discount factor

Amputation of finger 0.102

Lower back pain 0.061

Objection 3 It's computationally expensive to compute conditional probabilities and expectations over all possible
outcomes.

Answer: Agreed! That's what the tools in this course are designed to help with.

Where did  come from? That's what the rest of the course is about. 
In general these numbers will also be expectations over joint distributions many possible variables, like which infection we
have, the details of our own physiology. We can always make the model more detailed to include more information.

But this is ultimately what we're going to do with these probabilities: 
Use them to make informed decision to make our lives better.

Example: Cancer screening.

Now we'll consider an example of decision making conditioned on both actions, as well as data.

Suppose we have a real-valued input vector  and a corresponding target (output) value  with a known joint probability
distribution: .

For example, based on an X-ray image, we would like to update our beliefs about whether the patient has cancer. The
input vector  is the set of pixel intensities in the x-ray image, and the output variable  will represent the presence of
cancer, class , or absence of cancer, class .

P( outcome | action )

x c

p(x, c)

x c

C1 C2



Our belief after seeing the x-ray is given by:

If our goal were simply to make as few misclassifications as possible, we could minimize the expected number of mistakes
we'll make.

Since , in order to minimize the probability of making mistake, we assign each  to the
class for which the posterior probability  is largest. This minimizes the misclassification rate.

But realistically, a false positve usually has a much different cost than a false negative.

Expected loss

We want a loss function to measure of loss incurred by taking any of the available decisions under each (true but
unknown) state of the world.

Suppose that for some , the true class is , but we assign  to class . Then we define the loss incurred to be 
.

Here's a made up loss function for this example:

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
   Bayes’ rule.

p(x, C1) = p(C1|x)p(x) x

p(C1|x)

x Ck x Cj

L(k, j)



Thus the expected loss is given by

Goal is to choose regions  as to minimize expected loss.

E[L] = ∑
k

∑
j

∫
Rj

L(k, j) p(x, Ck)dx

Rj



Here's roughly what the conditional distribution looks like for this example: 

Sometimes you don’t have to make a decision and can take a third option.

In the above figure, the blue region corresponds to : the sample comes from class  but we classified as .

Therefore, we want to minimize

Define  and notice that .

Then, minimizing the expected loss,

is equivalent to choosing

L12 C1 C2

E[L] =∑
k

∑
j

∫
Rj

Lkj p(x, Ck)dx

=∑
j

∫
Rj

∑
k

Lkj p(x, Ck)dx.

gj(x) = ∑k Lkj p(x, Ck) gj(x) ≥ 0

E[L] =∑
j

∫
Rj

gj(x)dx

Rj = {x  :  gj(x) < gk(x)  for all  k ≠ j}.



In words, for each , we choose the action that has the lowest expected reward for that .

We can also you the product rule  and reduce the problem to:

Find regions  such that the following is minimized:

That is

Loss functions for regression
So far, we have discussed decision theory in the context of classification. We will briefly extend this for the regression
setup as well. Now we consider an input/target setup  where the target (output) is continuous , and their joint
density is given by .

Instead of trying to find decision regions, this time we try to find a regression function  which maps inputs to the
outputs. We choose a loss function  between the regression function  and the target  to assess the quality of our
estimate, i.e., .

The expected loss in this case,

What is the best regression function  that minimizes the expected loss?

Let's choose the loss function as the squared error loss to simplify things a bit, i.e. .

x x

p(x, C1) = p(C1|x)p(x)

Rj

∑
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Lkj p(Ck|x).

Rj = {x  : ∑
k

Lkj p(Ck|x) < ∑
k

Lki p(Ck|x)  for all  i ≠ j}.

(x, t) t ∈ R

p(x, t)

y(x) ≈ t

L y(x) t

L = L(y(x), t)

E[L] = ∫ ∫ L(y(x), t)p(x, t)dxdt.

y(x)

L(y(x), t) = (y(x) − t)2



The last step follows since

since the term in the braces is

We showed that the expected loss is given by the sum of two non-negative terms

The second term does not depend on  thus choosing the best regression function  is equivalent to minimizing the
first term on the right hand side. Thus, we get

The second term is the expectation of the conditional variance of . It represents the intrinsic variability of the target
data and can be regarded as noise.

Summary
Depending on the application, one needs to choose an appropriate loss function.

E[L] =∫ ∫ (y(x) − t)2p(x, t)dxdt

=∫ ∫ (y(x) − E[t|x] + E[t|x] − t)2p(x, t)dxdt

=∫ ∫ (y(x) − E[t|x])2p(x, t)dxdt + ∫ ∫ (E[t|x] − t)2p(x, t)dxdt

∫ ∫ (y(x) − E[t|x])(E[t|x] − t)p(x, t)dxdt

= ∫ ∫ (y(x) − E[t|x])(E[t|x] − t)p(t|x)p(x)dxdt

= ∫ (y(x) − E[t|x]){∫ (E[t|x] − t)p(t|x)dt}p(x)dx = 0

∫ (E[t|x] − t)p(t|x)dt = E[t|x] − E[t|x] = 0.

E[L] = ∫ ∫ (y(x) − E[t|x])2p(x, t)dxdt + ∫ ∫ (E[t|x] − t)2p(x, t)dxdt.

y(x) y(x)

y(x) = E[t|x].

t|x



Loss function can significantly change the optimal decision rule.
In case of regression, one can find the optimal map between  and  if one knows the conditional distribution . The
optimal map under a squared loss is the conditional expectation .

x t t|x

E[t|x]


