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Joint distributions.
The joint distribution of  random variables is a very general way to encode knowledge
about a system.

In general, a discrete distribution of  variables each of which can take  states requires 
 parameters to specify.

They can always be decomposed into a set of simpler conditional distributions by the
chain rule of probability

this is true for any joint distribution over any random variables. For example, an
application of the chain rule for two random variables gives

and for  random variables

for all possible orderings.

This decomposition doesn't reduce the number of parameters.
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p(x1,x2, … ,xN) = p(x1)p(x2|x1)p(x3|x2,x1) … p(xN |xN−1, ⋯ ,x1)

p(x, y) = p(x|y)p(y) = p(y|x)p(x)

N

p(x1,x2, … ,xN) =
N

∏
j=1

p(xj|x1,x2, … ,xj−1)

http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html
https://en.wikipedia.org/wiki/Chain_rule_%28probability%29


Number of parameters for joint distributions
The size of array representing a joint distribution can be huge if there are many variables
and if the variables take on many states. This is true for both discrete and continuous
variables, but is simpler in the discrete setting, so we'll focus on that in this lecture.

To see this, it is helpful to think of the joint distribution over a set of  random variables as
a table with  parameters, where  the number of states each variable can take.

For simplicity, this assumes each variable takes on the same number of states, .

Example

For example, the joint distribution over weather, , and temperature 



where each variable can take 2 states can be represented by a  grid of parameters.

If we extend the possible weather states to include snow and fog, 



then the parameterization of the joint would require a  grid of parameters.

If we also want our model to capture the mode of transportation for how we will get to
class, , then the parameterization would now require a  cube
of parameters.

Actually, this is not quite accurate. In all cases we would require 1 fewer
parameters to fully specify these distributions. This is due to the
requirement that . If we know all but 1 parameter, then we
can always solve for the remaining parameter.

How to reduce the number of parameters?

Most of the art of building models is maintaining the necessary flexiblity while using as
few parameters as possible. One of the main tools we have is enforcing independence
between variables. This is the same as enforcing factorizations, such as 

.

The above discussion made no factorizations, giving the worst case of .

This is maximally expressive, but requires us to parameterize every possible state.

Independence restricts the expressiveness of our model, but reduces the number of
parameters required to specify a joint distribution.
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W = {sun, rain}

T = {cold,hot}

2 × 2

W = {sun, rain, snow, fog}

2 × 4

M = {walk, bike, ttc} 2 × 4 × 3

∑x P(X = x) = 1

p(a, b) = p(a)p(b) ∀a∀b

kn



For example, we can assume that  and  are independent (this is maybe a bad
assumption!), but that our mode of transportation depends on temperature and weather.

This joint factorization encodes the independence assumptions, and requires fewer
parameters to represent.

Conditional Independence

Reminder: Two random variables ,  are conditionally independent given a third
variable , denoted

if

for all .

Only a subset of all joint distributions respect any given conditional independence
statement.

Directed acyclic graphical models
Reminder: The meaning of any particular directed acyclic graphical model  is that

where  is the set of nodes with edges pointing to .

In other words, the joint distribution of a DAGM factors into a product of local conditional
distributions, where each node (a random variable) is conditionally dependent on its
parent node(s).

For example, the graphical model

T W

P(T ,W ,M) = P(T )P(W)P(M|T ,W)

XA XB

XC

XA ⊥ XB|XC

⇔ p(XA,XB|XC) = p(XA|XC)p(XB|XC)

⇔ p(XA|XB,XC) = p(XA|XC)

⇔ p(XB|XA,XC) = p(XA|XB)

Xc

D

p(x1,x2, … ,xN) =
N

∏
i=1

p(xi|parentsM(xi))

parentsM(xi) xi

https://en.wikipedia.org/wiki/Graphical_model#Bayesian_network


corresponds to the following factorization of the joint distribution:

The general formula for the number of parameters necessary to specify the conditional
probability table (CPT) of a variable with  parents each of which can take  states is:

Suppose each is  is a binary random variable. How many parameters does it take to
represent this joint distribution?

p(x1,x2, . . . ,x6) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x6|x2,x5)

N K

(K − 1)

pmf of node

× NK

possible states of parents
 

xi



where each conditional probabilty table with  parents requires  parameters.

If we allow all possible conditional dependencies, that corresponds to a fully-connected
DAG:

K 2K



which will require  parameters to specify.

Since we only condition on parent nodes as opposed to every node, this distribution is
exponential in the fan-in of the nodes (the number of nodes in the parent set), instead of
in .

In general, it's computationally infeasible to work with fully-flexible distributions like this
one, both because of the computational burden, and because it's hard to fit so many
parameters accurately.

We can reduce the number of parameters in a model, and also reduce the computational
burden of making inferences by introducing conditional independencies. This might not be
a bad approximation in some settings.

Conditional Independence in DAGMs
From Kevin Murphy: The simplest conditional independence relationship encoded in a
Bayesian network can be stated as follows: a node is independent of its ancestors given
its parents:

2N − 1

N

xi⊥xπ̃i
 | xπi

https://en.wikipedia.org/wiki/Fan-in
https://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html


In general, missing edges imply conditional independence. The next part of this lecture
will be about how to determine which conditional independencies hold given a DAG.

D-Separation
D-separation, or directed-separation is a notion of connectedness in DAGs in which two
(sets of) variables may or may not be connected conditioned on a third (set of)
variable(s).

D-connection implies conditional dependence and d-separation implies conditional
independence.

For set , we denote by . In particular, we say that

if every variable in  is d-separated from every variable in  conditioned on all the
variables in . We will look at two methods for checking if an independence is true: A
depth-first search algorithm and Bayes Balls.

DFS Algorithm for checking independence

To check if an independence is true, we can cycle through each node in , do a depth-
first search to reach every node in , and examine the path between them. If all of the
paths are d-separated (i.e., conditionally independent), then

It will be sufficient to consider triples of nodes.

Let's go through some of the most common triples.

1. Chain

Question: When we condition on , are  and  independent?

Answer:

From the graph, we get

A ⊂ {1, 2, . . . ,N} xA = {xi  :  i ∈ A}

xA⊥xB | xC

A B

C

A

B

xi⊥xj | xk

y x z

P(x, y, z) = P(x)P(y|x)P(z|y)

https://metacademy.org/graphs/concepts/bayes_ball#focus=bayes_ball&mode=learn


which implies

  and so by , .

It is helpful to think about  as the past,  as the present and  as the future
when working with chains such as this one.

2. Common Cause

Where we think of  as the "common cause" of the two independent effects  and .

Question: When we condition on , are  and  independent?

Answer:

From the graph, we get

which implies

P(z|x, y) =
P(x, y, z)

P(x, y)

=
P(x)P(y|x)P(z|y)

P(x)P(y|x)
= P(z|y)

∴ P(z|x, y) = P(z|y) ⋆⋆ x⊥z|y

x y z

y x z

y x z

P(x, y, z) = P(y)P(x|y)P(z|y)



  and so by , .

3. Explaining Away

Question: When we condition on , are  and  independent?

Answer:

From the graph, we get

which implies

  and so by , .

In fact,  and  are marginally independent, but given  they are conditionally dependent.
This important effect is called explaining away (Berkson’s paradox).

P(x, z|y) =
P(x, y, z)

P(y)

=
P(y)P(x|y)P(z|y)

P(y)
= P(x|y)P(z|y)

∴ P(x, z|y) = P(x|y)P(z|y) ⋆ x⊥z|y

y x z

P(x, y, z) = P(x)P(z)P(y|x, z)

P(z|x, y) =
P(x)P(z)P(y|x, z)

P(x)P(y|x)

=
P(z)P(y|x, z)

P(y|x)
≠ P(z|y)

∴ P(z|x, y) ≠ P(z|y) ⋆⋆ x⊥̸z|y

x z y

https://en.wikipedia.org/wiki/Berkson%27s_paradox


Imaging flipping two coins independently, represented by events  and .
Furthermore, let  if the coins come up the same and  if they come
up differently. Clearly,  and  are independent, but if I tell you , they
become coupled!

Bayes-Balls Algorithm

A particular algorithm for determining conditional independence in a DAGM is the Bayes
Ball algorithm. To check if  we need to check if every variable in  is d-
seperated from every variable in  conditioned on all variables in . In other words, given
that all the nodes in  are "clamped", when we "wiggle" nodes  can we change any of
the nodes in ?

In general, the algorithm works as follows:

1. Shade all nodes 
2. Place "balls" at each node in  (or )
3. Let the "balls" "bounce" around according to some rules

If any of the balls reach any of the nodes in  from  (or  from ) then 

Otherwise 

The rules are as follows:

x z

y = 1 y = 0

x z y

xA⊥xB|xC A

B C

xC xA

xB

xC

xA xB

xB xA xA xB

xA⊥̸xB|xC

xA⊥xB|xC

https://metacademy.org/graphs/concepts/bayes_ball#focus=bayes_ball&mode=learn


including the boundary rules:



where arrows indicate paths the balls can travel, and arrows with bars indicate paths the
balls cannot travel.

Notice balls can travel opposite to edge directions!

Here’s a trick for the explaining away case: If  or any of its descendants is shaded, the
ball passes through.

See this video for an easy way to remember all 10 rules.

Examples

Question: In the following graph, is ?

y

x1⊥x6|{x2,x3}

https://www.youtube.com/watch?v=jgt0G2PkWl0


Answer:

Yes, by the Bayes Balls algorithm.



Question: In the following graph, is ?x2⊥x3|{x1,x6}



Answer:

No, by the Bayes Balls algorithm.



Example of a DAGM: Markov Chain

Markov chains are a stochastic model describing a sequence of possible events in which
the probability of each event depends only on the state attained in the previous event.

In other words, it is a model that satisfies the Markov property, i.e., conditional on the
present state of the system, its future and past states are independent.

Plates

Because Bayesian methods treat parameters as random variables, we would like to
include them in the graphical model. One way to do this is to repeat all the iid

https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Markov_property


observations explicitly and show the parameter only once. A better way is to use plates,
in which repeated quantities that are iid are put in a box

Plates are like “macros” that allow you to draw a very complicated graphical model with a
simpler notation.

The rules of plates are simple: repeat every structure in a box a number of times given by
the integer in the corner of the box (e.g. ), updating the plate index variable (e.g. ) as
you go. Duplicate every arrow going into the plate and every arrow leaving the plate by
connecting the arrows to each copy of the structure.

Nested Plates

Plates can be nested, in which case their arrows get duplicated also, according to the
rule: draw an arrow from every copy of the source node to every copy of the destination
node.

N n



Plates can also cross (intersect), in which case the nodes at the intersection have multiple
indices and get duplicated a number of times equal to the product of the duplication
numbers on all the plates containing them.

Unobserved Variables

Certain variables in our models may be unobserved (  in the example given below), either
some of the time or always, at training time or at test time.

Graphically, we use shading to indicate observation.

Partially Unobserved (Missing) Variables

If variables are occasionally unobserved then they are missing data, e.g., undefined
inputs, missing class labels, erroneous target values. In this case, we can still model the
joint distribution, but we marginalize the missing values:

Q

ℓ(θ;D) = ∑
complete

log p(xc, yc|θ) + ∑
missing

log p(xm|θ)

= ∑
complete

log p(xc, yc|θ) + ∑
missing

log∑
y

p(xm, y|θ)



Recall that .

Latent variables

What to do when a variable  is always unobserved? Depends on where it appears in our
model. If we never condition on it when computing the probability of the variables we do
observe, then we can just forget about it and integrate it out.

E.g., given ,  fit the model . In other words if it is a leaf node.

However, if  is not a leaf node, marginalizing over it will induce dependencies between its
children.

E.g. given ,  fit the model .

Where do latent variables come from?

Latent variables may appear naturally, from the structure of the problem (because
something wasn’t measured, because of faulty sensors, occlusion, privacy, etc.). But we
also may want to intentionally introduce latent variables to model complex dependencies
between variables without specifying the dependencies between them directly.

p(x) = ∑q p(x, q)

z

y x p(z, y|x) = p(z|y)p(y|x,w)p(w)

z

y x p(y|x) = ∑z p(y|x, z)p(z)



Mixture models

What if the class is unobserved? Then we sum it out

We can use Bayes' rule to compute the posterior probability of the mixture component
given some data:

these quantities are called responsibilities.

Example: Gaussian Mixture Models

Consider a mixture of  Gaussian componentns

p(x|θ) =
K

∑
k=1

p(z = k|θz)p(x|z = k, θk)

p(z = k|x, θz) =
p(z = k|θz)pk(x|θk)

∑j p(z = j|θz)pj(x|θj)

K

∑



Density model:  is the marginal density.
Clustering:  is cluster assignment probability.
Fitting:  is the log marginal likelihood.

Tutorial
Below are some detailed examples of the above concepts.

Second-order Markov chain

The earlier images depicts a first-order Markov chain, this is a second-order Markov
chain.

Hidden Markov Models (HMMs)

Hidden Markov Model (HMM) is a statistical Markov model in which the system being
modeled is assumed to be a Markov process with unobserved (i.e. hidden) states. It is a
very popular type of latent variable model

p(x|θ) =∑
k

αkN (x|μk, Σk)

log(x1,x2, … ,xN)|θ) =∑
n

log∑
k

αkN (x(n)|μk, Σk)

p(z = k|x, θ) =
αkN (x|μk, Σk)

∑j αjN (x|μj, Σj)

p(x|θ)

p(z|x, θ)

p(z = k|x, θ)

https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Markov_process


where

 are hidden states taking on one of  discrete values
 are observed variables taking on values in any space

the joint probability represented by the graph factorizes according to

Conditional independence examples and Bayes Ball

Example: Explaining away from Kevin Murphy's tutorial

From Kevin Murphy's page on graphical models:

Consider a college which admits students who are either brainy or sporty (or both!). Let C
denote the event that someone is admitted to college, which is made true if they are
either brainy (B) or sporty (S). Suppose in the general population, B and S are
independent. We can model our conditional independence assumptions using a graph
which is a V structure, with arrows pointing down.

Now look at a population of college students (those for which C is observed to be true). It
will be found that being brainy makes you less likely to be sporty and vice versa, because
either property alone is sufficient to explain the evidence on C.

Example: Mixtures of Experts

Think about the following two sets of data, and notice how there is some underlying
structure not dependent on x.

Zt K

Xt

p(X1:T ,Z1:T ) = p(Z1:T )p(X1:T |Z1:T ) = p(Z1)
T

∏
t=2

p(Zt|Zt−1)
T

∏
t=1

p(Xt|Zt)

http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html


The most basic latent variable model might introduce a single discrete node, , in order to
better model the data. This allows different submodels (experts) to contribute to the
(conditional) density model in different parts of the space (known as a mixture of
experts).

Mixtures of experts, also known as conditional mixtures are exactly like a class-
conditional model, but the class is unobserved and so we sum it out:

where . This is a harder problem than the previous example, as we must
learn , often called the gating function (unless we chose  to be independent of ).
However, we can still use Bayes' rule to compute the posterior probability of the mixture
components given some data:

Example: Mixtures of Linear Regression Experts

In this model, each expert generates data according to a linear function of the input plus
additive Gaussian noise

z

p(y|x, θ) =
K

∑
k=1

p(z = k|x, θz)p(y|z = k,x, θK) =∑
k

αk(x|θz)pk(y|x, θk)

∑k αk(x) = 1 ∀x

α(x) z x

p(z = k|x, y, θ) =
αk(x)pk(y|x, θk)

∑j αj(x)pj(y|xj, θj)

∑

https://en.wikipedia.org/wiki/Mixture_of_experts
https://en.wikipedia.org/wiki/Mixture_of_experts


where the gating function can be a softmax classifier

Remember: we are not modeling the marginal density of the inputs .

Gradient learning with mixtures
We can learn mixture densities using gradient descent on the likelihood as usual.

In other words, the gradient is the responsibility weighted sum of the individual log
likelihood gradients

!!! tip

We used two tricks here to derive the gradient,  and


Useful Resources
Metacademy lesson on Bayes Balls. In fact, that link will bring you to a short course
on a couple important concepts for this course, including conditional probability,
conditional independence, Bayesian networks and d-separation.
A video on how to memorize the Bayes Balls rules (this is linked in the above
course).

p(y|x, θ) =∑
k

αkN (y|βT
k x,σ2

k)

αk(x) = p(z = k|x) =
eη

T
k x

∑j e
ηT
k
x

x

ℓ(θ) = log p(x|θ) = log∑
k

αkpk(xk|θk)

⇒
∂ℓ

∂θ
=

1

p(x|θ)
∑
k

αk

∂pk(x|θ)

∂θ

=∑
k

αk

1

p(x|θ)
pk(x|θk)

∂ log pk(x|θk)

∂θ

=∑
k

αk

pk(x|θk)

p(x|θ)

∂ℓk
∂θk

=∑
k

αkrk
∂ℓk
∂θk

∂ log f(θ)
∂θ = 1

f(θ)
⋅

∂f(θ)
∂θ

∂f(θ)

∂θ
= f(θ) ⋅

∂ log f(θ)

∂θ

https://metacademy.org/graphs/concepts/bayes_ball#focus=bayes_ball&mode=learn
https://www.youtube.com/watch?v=jgt0G2PkWl0

