CSC 412/2506:

Probabilistic Learning and Reasoning
Week 4 - 1/2: Message Passing

Murat A. Erdogdu

University of Toronto

Prob Learning (UofT)

CSC412-Week 4-1/2 1/18



Overview

@ Trueskill latent variable model

@ Message passing
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Latent variables

@ What to do when a variable z is unobserved?

e If we never condition on z when in the inference problem, then we
can just integrate it out.

e However, in certain cases, we are interested in the latent variables
themselves, e.g. the clustering problems

@ More on latent variables when we cover G ssian mixtures.

le:"z\J X132z 1
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The TrueSkill latent variable model

e TrueSkill model is a player ranking system for competitive games.

@ The goal is to infer the skill of a set of players in a competitive
game, based on observing who beats who.

e In the TrueSkill model, each player has a fixed level of skill,
denoted z;.

@ We initially don’t know anything about anyone’s skill, but we
assume everyone’s skill is independent (e.g. an independent
Gaussian prior).

@ We never get to observe the players’ skills directly, which makes
this a latent variable model.

Prob Learning (UofT)

CSC412-Week 4-1/2 4/18



TrueSkill model

e Instead, we observe the outcome of a series of matches between
different players.

@ For each game, the probability that player ¢ beats player j is given
by A
p(i beats j) = o(z; — %) "/Zfﬁ(/-
| e
14exp(~y) -
@ We can write the entire joint likelihood of a set of players and

where sigma is the logistic function: o(y) =

games as:

p(z1, 22, ...2N,game 1, game 2, .. game T)

N
_ [Hp(zz)] [ H p(i beats j|zi, ;)

games
poooT A
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e Given the outcome of some matches, the players’ skills are no
longer independent, even if they’ve never played each other.

e Computing the posterior over even two players’ skills req
integrating over all the other players’ skills: %ﬂwﬂ 0 6'707&_5

vy gawﬂﬂ

p(z1, 22|game 1, game 2, ../ game T)
Xel —-
/ / p(z1, 22,23 ... 2n|T)dz3 . .

@ Message passing can be used to compute &sterlors!

@ More on this model in Assignment 2. Q}ﬂo/% 4 / 3%")& A
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Variable Elimination Order and Trees

e Last week: we can do exact inference by variable elimination: I.e.
to compute p(A|C), we can marginalize p(A, B|C) over every
variable in B, one at a time.

e Computational cost is determined by the graph structure, and the
elimination ordering.

@ Determining the optimal elimination ordering is hard.

e Even if we do, the resulting marginalization might also be @

unreasonably costly.
20111 the

——

e Fortunately, for trees, any elimination ordering tha
leaves inwards towards any root will be optimﬁ.

@ You can think of trees as just chains which somgtimeg=hranck

O0—o—0—0—-—0=—0
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U
Inference in Trees

L4y

(2(4)[‘ o A graphis G = (V,€) where V is
(| Y the set of vertices (nodes) and £ the
(4 (() set of edges

e Fori,j € V, we have (7,5) € £ if
there is an edge between the nodes
1 and j.

e For a node in graph i € V, N (i)
denotes the neighbors of i, i.e.

N(i) ={j: () € &}

X4 X5 o Shaded nodes are observed, and
denoted by T2, x4, 5.
The joint distribution in the general case is 7<(F

1
#jqz(\(-{ /\(—L)p(il?l:n) - Zil;ljw(ﬁz)(iggww(w“x )
it
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Inference in Trees \P{\ _ P(*E’ 1\%) \f/V e =Tl
\/,- <4
e Joint M/

p(a1n) = ATl TT i),

eV i,J)EE

e Want to compute p(x3|T2, T4, T5).
@ We have

p(x3|T2, T4, T5) X p(x3, T2, T4, T5).

_ _ _ 1
p(xs | X2,X4, X5)=Z—E D 1) w3 (x3) P2 (X2)a(Xa) s (Xs) 12 (X2, x1) %34 (Xa, x3) 135 (X5, x3) P13 (1, X3)

x1

@ Let’s write the variable elimination.
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Inference in Trees

(F(Ml )

@

1
P(x3 | X2,X4,X5) = ZE D~ b1 (xa)3(x3) 2 (X2)ha(Xa) s (X6 )12 (X2, x1) P34 (Xa, x3)35 (X5 5 Xx3)Ph13(x1, X3)
x1
1
= ZE Ya(Xa)3a(Xa, x3) ¥5(X5) 35 (X5, x3) 13(x3) D 1(xa) vz (xa, x3) P2(X2)¢12(X2, x1)
mg3(x3) m53(x3) - ma1(x1)
1 ~—7\ P
= —E¢3(X3)M4§(X3)m53(><3)z¢1(X1)¢13(X1,X3£21(X1) |
Z x1 — T —
m131X3)

/1 _ P3(x3)ma3(x3)ms3(x3)m13(x3) ~
z€ Vebaimisbalmaala)msb)= 2 xg ¥3(x3)maz(x3)ms3(x3)m13(x3) (K
(X§> ¢ c 9

™ ot (2
Slide credit: S. Ermon 3
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Message Passing on Trees

We perform variable elimination from leaves to root, which is the sum
product algorithm to compute all marginals. Belief propagation is a
message-passing between neighboring vertices of the graph.

@ The message sent from variable j to i € N(j) is

m]—>z xz E % &g %g 331733] H MEk— CC]

Lj

X 4

> If x; is observed, the messagf is \)/

mj—)Z(xl) wj (37] wm xl)'xj H mk—>g

\R@ Y3 Myan (%)% W?Xfiv %

@ Once the message passing stadge is cornplete, Wé cary compute our

beliefs as o) o H (X> go (<)
b(?ﬂ)d%(xi) ;\7:0@)\7(%) i ? 4 Zibm\

@ Once normalized, beliefs are the marginals we want to Compute'
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Message Passing on Trees

The message sent from variable j to ¢ € N(j) is

mj—m 55'7, E % &Ly @% x’uxj H Mik— 37]

keEN(5)/i 0 A
D 4
4 to root i /’ ( hﬂ (d
() i T m;; (x;) / V:I)I(‘(

Each message m;_,;(x;) is a vector with one value for each state of z;.
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Inference in Trees: Compute p(z1|Z2, T4, Ts)

o mis3(z3) = ., Y1(x1)1s(z1, z3)ma1(z1)

o b(x3) o ¢3($3)m1—>3(96 )ma3(x3)ms_3(r3)
This is the same as variable elimination, so

(3|2, T4, T5) = b(x3)
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Belief Propagation on Trees (’ %) L L
o(
030555 5 ([ )
Belief Propagation Algorithm on Trees
@ Choose root r arbitrarily -
\l"‘ﬂ,s(\(s) [O(X‘S ( “")

N @ 'Pass messages from leafs to r
X3

« msry) @ Pass messages from r to leafs

mi3(xs) X

X1
121(X1 )v,ﬂ

@ These two passes are sufficient on trees!

X4 X5

1143(.X3)

X2 b(x;) o () H mi—yi(x;), Vi
JEN(3) T
(0 (7(1'[ N

o Compute unnormalized beliefs b(z;) =oc= () [] jeN (@) My—i(Ti)

o Normalize them b(z;) = b(z;)/ Dz, b(x;).

o Compute beliefs (marginals)

One can compute them in two steps:
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Loopy Belief Propagation

4
."\4—72, O

7 3

e What if the graph (MRF) we have is not a tree and have cycles?
e Keep passing messages until convergence.
e This is called Loopy Belief Propagation.

@ This is like when someone starts a rumour and then hears the same
rumour from someone else, making them more certain it’s true.

e We won’t get the exact marginals, but an approximation.

e But turns out it is still very useful!
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Loopy Belief Propagation

Loopy BP:
e Initialize all messages uniformly:

iy @) = [1/k, ey 17K
where k is the number of states x; can take.
@ Keep running BP updates until it “converges”:

misi() = Y ()i ay) [ mass(e))
Ly keEN (j)F#i
and normalize for stability.

e It will generally not converge, but that’s generally ok.
e Compute beliefs

b(xz>oc¢z<$z) H mj_m;(xi).
JEN(3)

This algorithm is still very useful in practice, without any theoretical
guarantee (other than trees). J
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Sum-product vs. Max-product

@ The algorithm we learned is called sum-product BP and
approximately computes the marginals at each node.

e For MAP inference, we maximize over x; instead of summing over
them. This is called max-product BP.

e BP updates take the form
mijyi(2i) = max;(x; )i (i, ;) H Mg (2;)
’ KEN (5)i
e After BP algorithm converges, the beliefs are max-marginals
b(w:) o hi(wi) [[ myosilas).
JEN(4)
e MAP inference:

T; = argmax b(x;).
z;
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Summary

e This algorithm is still very useful in practice, without any
theoretical guarantee (other than trees).

e Loopy BP multiplies the same potentials multiple times. It is
often over-confident.

e BP can oscillate, but may be still useful.

e It often works better if we normalize messages, and use
momentum.

@ The algorithm we learned is called sum-product BP. If we are
interested in MAP inference, we can maximize over x; instead of
summing over them. This is called max-product BP.
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