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Sampling

A sample from a distribution p(x) is a single realization x whose
probability distribution is p(x). Here, x can be high-dimensional
or simply real valued.

We assume the density from which we wish to draw samples, p(x),
can be evaluated to within a multiplicative constant. That is, we
can evaluate a function p̃(x) such that

p(x) =
p̃(x)

Z
.
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Ancestral Sampling

Given a DAG, and the ability to sample from each of its factors given
its parents, we can sample from the joint distribution over all the nodes
by ancestral sampling, which simply means sampling in a
topoplogical order.

at each step, sample from any conditional distribution that you
haven’t visited yet, whose parents have all been sampled.

Example: In a chain you would always start with z1 and move to the
right. In a tree, you would always start from the root.
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Ancestral Sampling Example
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Main objectives of sampling

We will be using Monte Carlo methods to solve one or both of the
following problems.

Problem 1: To generate samples {x(r)}Rr=1 from a given
probability distribution p(x).

Problem 2: To estimate expectations of functions, �(x), under
this distribution p(x)

� = E
x⇠p(x)

[�(x)] =

Z
�(x)p(x)dx

� is called a test function.
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Example

Examples of test functions �(x):

the mean of a function f under p(x) by finding the expectation of
the function �1(x) = f(x).

the variance of f under p(x) by finding the expectations of the
functions �1(x) = f(x) and �2(x) = f(x)2

�1(x) = f(x) ) �1 = E
x⇠p(x)

[�1(x)]

�2(x) = f(x)2 ) �2 = E
x⇠p(x)

[�2(x)]

) var(f(x)) = �2 � (�1)
2
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Estimation problem

We start with the estimation problem using simple Monte Carlo:

Simple Monte Carlo: Given {x(r)}Rr=1 ⇠ p(x) we can estimate
the expectation E

x⇠p(x)
[�(x)] using the estimator �̂:

� = E
x⇠p(x)

[�(x)] ⇡ 1

R

RX

r=1

�(x(r)) = �̂

The fact that �̂ is a consistent estimator of � follows from the
Law of Large Numbers (LLN).
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Basic properties of Monte Carlo estimation

Unbiasedness: If the vectors {x(r)}Rr=1 are generated
independently from p(x), then the expectation of �̂ is �.

E[�̂] =E

1

R

RX

r=1

�(x(r))

�
=

1

R

RX

r=1

E
⇥
�(x(r))

⇤

=
1

R

RX

r=1

E
x⇠p(x)

⇥
�(x)

⇤
=

R

R
E

x⇠p(x)

⇥
�(x)

⇤

=�
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Simple properties of Monte Carlo estimation

Variance: As the number of samples of R increases, the variance
of �̂ will decrease with rate 1

R

var[�̂] =var


1

R

RX

r=1

�(x(r))

�

=
1

R2
var

 RX

r=1

�(x(r))

�

=
1

R2

RX

r=1

var


�(x(r))

�

=
R

R2
var[�(x)]

=
1

R
var[�(x)]

Accuracy of the Monte Carlo estimate depends on the variance of �.
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Sampling problem

Assume we know the density p(x) up to a multiplicative constant

p(x) =
p̃(x)

Z

There are two di�culties:
I We do not generally know the normalizing constant, Z. The main

di↵uculty is computing it

Z =

Z
p̃(x)dx

which requires computing a high-dimensional integral.
I Even if we did know Z, the problem of drawing samples from p(x)

is still a challenging one, especially in high-dimensional spaces.
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Bad Idea: Lattice Discretization

Imagine that we wish to draw samples from the density p(x) = p̃(x)
Z

given in figure (a).

How to compute Z?
We could discretize the variable x and sample from the discrete
distribution (figure (b)).
In figure (b) there are 50 uniformly spaced points in one
dimension. If our system had, D = 1000 dimensions say, then the
corresponding number of points would be 50D = 501000. Thus, the
cost is exponential in dimension!
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An analogy

Imagine the tasks of drawing random water samples from a lake and
finding the average plankton concentration. Let

p̃(x) = the depth of the lake at x = (x, y)
�(x) = the plankton concentration as a function of x
Z = the volume of the lake =

R
p̃(x)dx

The average concentration of plankton is therefore

� =
1

Z

Z
�(x)p̃(x)dx.
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An analogy

You can take the boat to any desired location x on the lake, and can
measure the depth, p̃(x), and plankton concentration, �(x), at that
point. Therefore,

Problem 1 is to draw water samples at random such that each
sample is equally likely to come from any point within the lake.

Problem 2 is to find the average plankton concentration.

We don’t know the depth p̃(x).

To correctly estimate �, our
method must implicitly discover the
canyons and find their volume
relative to the rest of the lake.
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Estimation tool: Importance Sampling

Importance sampling is a method for estimating the expectation of
a function �(x).

The density from which we wish to
draw samples, p(x), can be
evaluated up to normalizing
constant, p̃(x)

p(x) =
p̃(x)

Z

There is a simpler density, q(x)
from which it is easy to sample
from and easy to evaluate up to
normalizing constant (i.e. q̃(x))

q(x) =
q̃(x)

Zq
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Estimation tool: Importance Sampling

In importance sampling, we generate R samples from q(x)

{x(r)}Rr=1 ⇠ q(x)

If these points were samples from p(x) then we could estimate � by

� = E
x⇠p(x)

[�(x)] ⇡ 1

R

RX

r=1

�(x(r)) = �̂

That is, we could use a simple Monte Carlo estimator.

But we sampled from q. We need to correct this!

Values of x where q(x) is greater than p(x) will be
over-represented in this estimator, and points where q(x) is less
than p(x) will be under-represented. Thus, we introduce weights.
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Introduce weights: w̃r =
p̃(x(r))
q̃(x(r))

and notice that

1

R

RX

r=1

w̃r ⇡ E
x⇠q(x)

h p̃(x)

q̃(x)

i
=

Z
p̃(x)

q̃(x)
q(x)dx =

Zp

Zq

Finally, we rewrite our estimator under q

� =

Z
�(x)p(x)dx =

Z
�(x)·p(x)

q(x)
·q(x)dx ⇡ 1

R

RX

r=1

�(x(r))
p(x(r))

q(x(r))
= (⇤)

However, the estimator relies on p. It can only rely on p̃ and q̃.

(⇤) = Zq

Zp

1

R

RX

r=1

�(x(r)) · p̃(x
(r))

q̃(x(r))
=

Zq

Zp

1

R

RX

r=1

�(x(r)) · w̃r

⇡
1
R

PR
r=1 �(x

(r)) · w̃r

1
R

PR
r=1 w̃r

=
1

R

RX

r=1

�(x(r)) · wr = �̂iw

where wr =
w̃rPR
r=1 w̃r

and �̂iw is our importance weighted estimator.
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Sampling tool: Rejection sampling

We want expectations under p(x) = p̃(x)/Z which is a very
complicated one-dimensional density.

Assume that we have a simpler proposal density q(x) which we
can evaluate (within a multiplicative factor Zq, as before), and
from which we can generate samples.

Further assume that we know the value of a constant c such that

cq̃(x) > p̃(x) 8x
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Sampling tool: Rejection sampling

The procedure is as follows:

1. Generate two random numbers.
1.1 The first, x, is generated from the proposal density q(x).
1.2 The second, u is generated uniformly from the interval [0, cq̃(x)]

(see figure (b) above).

2. Evaluate p̃(x) and accept or reject the sample x by comparing the
value of u with the value of p̃(x)
2.1 If u > p̃(x), then x is rejected
2.2 Otherwise x is accepted; x is added to our set of samples {x(r)} and

the value of u discarded.
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Why does rejection sampling work?

1. x ⇠ q(x)
2. u|x ⇠ Unif[0, cq̃(x)]
3. x is accepted if u  p̃(x).

For any set A

Px⇠p(x 2 A) =

Z

A
p(x)dx =

Z
1{x2A}p(x)dx = Ex⇠p[1{x2A}].

Px⇠q(x 2 A|u  p̃(x)) =Px⇠q(x 2 A, u  p̃(x))
�
Ex⇠q[P(u  p̃(x)|x)]

=Ex⇠q[1{x2A}P(u  p̃(x)|x)]
�
Ex⇠q[

p̃(x)

cq̃(x)
]

=Ex⇠q[1{x2A}
p̃(x)

cq̃(x)
]
� Zp

cZq

=Px⇠p(x 2 A)
Zp

cZq

� Zp

cZq

=Px⇠p(x 2 A)
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Rejection sampling in many dimensions

In high-dimensional problems, the requirement that cq̃(x) � p̃(x)
will force c to be huge, so acceptances will be very rare.

Finding such a value of c may be di�cult too, since we don’t know
where the modes of p̃ are located nor how high they are.

In general c grows exponentially with the dimensionality, so the
acceptance rate is expected to be exponentially small in dimension

acceptance rate =
area under p̃

area under cq̃
=

1

Z
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Summary

Estimating expectations is an important problem, which is in
general hard. We learned 3 sampling-based tools for this task:

I Simple Monte Carlo
I Importance Sampling
I Rejection Sampling
I Ancestral Sampling

Next lecture, we will learn to generate samples from a particular
distribution.
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