
Gradient-based Stochastic Variational Inference
Related Reading

Murphy: Chapter 18

Overview

Basics of Variational Inference
Deriving the evidence lower bound (ELBO
Properties of the ELBO
Estimating gradients of the ELBO

Simple Monte Carlo
Reparameterization trick

Posterior Inference for Latent Variable Models
So far in this course we've worked with a few latent variable models, such as the generative image model and the trueskill
model.

These models have a factorization where

 are the observations or data,
 are the unobserved (latent) variables

 is usually called the prior
 is usually called the likelihood

The conditional distribution of the unobserved variables given the observed variables (aka the posterior) is

p(x, z) = p(z)p(x|z)

x

z

p(z)

p(x|z)

p(z|x) =
p(x|z)

p(x)
=

p(x|z)

∫ p(x, z)dz

https://en.wikipedia.org/wiki/Latent_variable_model

Concrete example: Prior, likelihood and posterior in Trueskill

Prior:

Says we're very uncertain about both player's skill.

Likelihood:

This is the part of the model that gives meaning to the latent variables. For example, if we reversed the sign on the skills
inside the likelihood, a lower skill would be better. If we want to include multiple types of skill per player, we'd have to
decide what that meant in terms of the probability of winning as a function of both player's sets of skills. We could also
learn this function!

Posterior:

The posterior isn't Gaussian anymore.

Posterior after A beats B 10 times:

Now the posterior is certain that A is better than B.

Posterior after both beat each other 10 times:

Now the posterior is certain that neither player is much better than the other, but is uncertain how good they both are in
an absolute sense.

Posterior after 90 wins vs 10

In general, the more evidence we have, the more the posterior will shrink.

What is hard to compute about the posterior?

The integral is intractable whenever is high dimensional. This makes evaluating or sampling from the
normalized posterior for a given and also intractable. This is a problem, because many of the queries we'd like to
make of our model require these abilites, and tuning the parameters of a model requires computing .

Here is a list of operations that are cheap (don't require integrating over all settings of):

 Sampling Simply sample , then , and return and .
 Sampling Simply sample , then , and return .

This is useful for sanity checking your model to see if the data it generates looks vaguely like real data (we did
this in HW1 with the sampled handwritten digits)

 Computing a likelihood ratio:
This is useful if we only have two specific hypotheses in mind that we want to compare.

 Computing a joint probability ratio:

 Computing a posterior ratio:

Same as a likelihood ratio but takes into account the prior .

p(x) = ∫ p(x, z)dz z

p(z|x) x z

p(x)

z

z,x ∼ p(z,x) z ∼ p(z) x ∼ p(x|z) z x

x ∼ p(x) z ∼ p(z) x ∼ p(x|z) x

p(x|z1)
p(x|z2)

p(z1,x)
p(z2,x)

= p(z1)p(x|z1)
p(z2)p(x|z2)

p(z1|x)

p(z2|x)
=

p(z1)p(x|z1)
p(x)

p(z2)p(x|z2)

p(x)

=
p(z1)p(x|z1)

p(z2)p(x|z2)

p(z)

Here is a list of operations that are expensive (require integrating over all settings of , or something equally hard):

 Computing a posterior probability:
 Computing the evidence / marginal likelihood

Useful for choosing between models, or fitting model parameters.
 Computing marginals of

E.g. finding the posterior over a single tennis player's skill given all games.
 Sampling

Useful for summarizing which hypotheses are likely given the data, making predictions, and decisions.
E.g. estimating a single player's skill using simple Monte Carlo:

Note that as soon as we write down the prior and the likelihood , we've also defined the posterior . It
exists, but we just don't know what it is until we compute .

z

p(z|x) = p(z)p(x)
p(x)

p(x) = ∫ p(z,x)dz

p(z1|x) = ∫ p(z1, z2, … zD|x)dz2, dz3, … dzD

z ∼ p(z|x)

Ep(z1|x) [z1] ≊
1

N

N

∑
i=1

zi where eachzi ∼ p(z1|x)

p(z) p(x|z) p(z|x)

p(x)

Approximating the Posterior with another, more tractable, distribution.

Last week, we learned how to approximately draw samples from the true posterior using MCMC

Samples drawn from running HMC on the unnormalized posterior.

This week, we'll learn an alternative family of methods called variational inference. This approach finds another
distribution that approximates the true posterior, one which we can cheaply sample from exactly:

A factorized Gaussian fit to approximate the true posterior.

So: MCMC approximately samples from the true posterior, and variational inference exactly samples from an approximate
posterior.

To be more formal, variational inference works as follows:

 Choose a tractable parametric distribution with parameters . This distribution will be used to approximate
. For example, , where . The idea is that we'll try choose a that makes a good

approximation of the true posterior .
 Encode some notion of "difference" between and that can be effciently estimated. Usually we will use the

KL divergence.
 Minimize this difference. Usually we will use an iterative optimization method like stochastic gradient descent.

qϕ(z) ϕ

p(z|x) qϕ(z) = N (z|μ, Σ) ϕ = (μ, Σ) ϕ qϕ(z)

p(z|x)

p(z|x) qϕ

Whatever parametric distribution we choose for , it's usually not the case that there is any setting of that exactly
matches the true posterior . But this isn't as bad as it sounds:

Computing the true posterior is intractable, so we have to take a shortcut somewhere.
Once we find a good , if we have time left over, we can start again with a more complicated parametric distribution
and get a closer fit.

q(z)ϕ ϕ

p(z|x)

ϕ

Kullback-Leibler Divergence

We will measure the difference between and using the Kullback-Leibler divergence:qϕ p

KL(qϕ(z)||p(z|x)) = ∫ qϕ(z) log
qϕ(z)

p(z|x)
dz

= E
z∼qϕ

log
qϕ(z)

p(z|x)

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

Properties of the KL Divergence

The last property means that is not a distance, since it's not symmetric.

You can play with a widget on this Bayesian Neural Net demo to get a feel for the KL

KL(qϕ||p) ≥ 0

KL(qϕ||p) = 0 ⇔ qϕ = p

KL(qϕ||p) ≠ KL(p||qϕ)

KL

https://www.cs.toronto.edu/~duvenaud/distill_bayes_net/public/

The evidence lower bound

We want to approximate by finding a such that .

Exactly evaluating is intractable because of the integral over . But it's even intractable to approximate
with simple Monte Carlo, because it contains the term , which we have already established, is intractable to
normalize.

It turns out we can still measure optimize this KL without knowing the normalization constant . There is a related
quantity called the evidence lower bound (ELBO. Maximizing the ELBO is the same as minimizing .

Where is the ELBO.

p(z|x) qϕ qϕ(z) ≈ p(z|x).EqactequivalentwillbeacheivedwhenKL(qϕ||p(z|x)) = 0

KL(qϕ(z)||p(z|x)) z

p(z|x)

p(x)

KL(qϕ||p(z|x))

KL(qϕ(z)||p(z|x)) = E
z∼qϕ

log
qϕ(z)

p(z|x)

= E
z∼qϕ

[log(qϕ(z) ⋅
p(x)

p(z,x)
)]

= E
z∼qϕ

log
qϕ(z)

p(z,x)
+ E

z∼qϕ
log p(x)

= −L(ϕ) + log p(x)

L(ϕ)

https://en.wikipedia.org/wiki/Evidence_lower_bound

Rearranging, we get $$ \begin{aligned} KL(q_\phi (z) || p(z | x)) & \mathcal L\phi) + \log p(x) \\ \Rightarrow \mathcal
L\phi) + KL(q_\phi (z) || p(z | x)) & \log p(x) \\ \end{aligned} $$

Because ,

 maximizing the ELBO minimizing .

KL(qϕ(z)||p(z|x)) ≥ 0

L(ϕ) ≤ log p(x)

∴ ⇒ KL(qϕ(z|x)||p(z|x))

Optimizing the ELBO

Now we know that maximizing the ELBO wrt will mean finding a better approximation to the true posterior, as measured
by the KL.

The remaing part of this lecture is about how to compute unbiased estimates of the gradient of the ELBO wrt , so that
we can use stochastic gradient descent.

We have that

If we want to optimize this with gradient methods, we will need to compute an unbiased estimate of .

ϕ

ϕ

L(ϕ) = − E
z∼qϕ

log
qϕ(z|x)

p(x, z)

= E
z∼qϕ

[log p(x|z) − log qϕ(z|x)]

∇ϕL(ϕ)

The reparameterization trick Nowadays, we have [automatic differentiation (AD
(https://en.wikipedia.org/wiki/Automatic_differentiation). However, there is a bit of subtle to differentiating through a
stochastic estimator.

We can use autodiff to compute unbiased gradients automatically if:

 is differentiable wrt . Can have discrete such as text, no problem.
 We need to sample to estimate the ELBO with simple Monte Carlo. We need to break this sampling process

into two parts:
 Sample a random variable that has fixed (or no) parameters, such as a uniform distribution or standard

normal.
 Determinsitically compute 's as a function and the noise , such that:

 implies

p(x, z) z x

z ∼ qϕ(z)

ϵ

z ϕ ϵ

ϵ ∼ p(ϵ)

z = T (ϵ,ϕ)

z ∼ qphi(z)

A simple example is that you can sample from a by:

 implies

N (μ,σ)

ϵ ∼ N (0, 1)

z = μ + ϵσ

z ∼ N (μ,σ)

Define variational family by a reparameterized sampler,
and a matching normalized density.

def diag_gaussian_sample(rng_key, mean, std):
 return mean + std * random.normal(rng_key, mean.shape)

def diag_gaussian_logpdf(z, mean, std):
 return np.sum(norm.logpdf(z, mean, std), axis=-1)

Applying this transformation to the ELBO lets us move the gradient inside the expectation. We want an expectation on the
outside wrt q, because this will let us use simple Monte Carlo:

∇ϕL(ϕ) = ∇ϕEz∼qϕ(z|x)[log p(x, z) − log qϕ(z)]

= ∇ϕEϵ∼p(ϵ)[log p(x,T (ϕ, ϵ)) − log qϕ(T (ϕ, ϵ))]

= Eϵ∼p(ϵ)∇ϕ[log p(x,T (ϕ, ϵ)) − log qϕ(T (ϕ, ϵ))]

Code for gradient-based stochastic variational inference:

When using, for example, a Gaussian variational approximate posterior, the JAX code is very simple:

This code is very general: It works for any unnormalized log-posterior that's differentiable wrt .

Define unbiased estimate of ELBO and its gradient wrt
parameters of variational distribution.

def elbo(phi, log_p_x_and_z, rng_key):
 mean, std = phi
 z_sample = diag_gaussian_sample(rng_key, mean, std)
 return log_p_x_and_z(sample) - diag_gaussian_logpdf(z_sample, mean, std)

grad_elbo_estimate = grad(elbo)

z

Worked example: Bayesian neural network

 are weights of neural network
 are all observed input + output pairs

 prior on weights, usually standard normal (hard to set)

for regression:
for classification:
 is a collection of plausible sets of parameters that all fit the data (and have some probablity under the prior).

Certain where the data is, uncertain where extrapolation is ambiguous.

z

x

p(z)

p(x|z) = ∏i p(yi|xi, z)

p(yi|xi, z) = N (nnet(xi, z),σ2)

p(yi|xi, z) = Categorical(yi|softargmax(nnet(xi, z)))

p(z|x)

MCMC vs SVI

Pros of MCMC

Asymptotically exact

Cons of MCMC

Easy to have a bug and not know it
Hard to tune hyperparameters
Hard to tell if you'pre making progress
Can't use minibatches (easily - there has been limited progress in this area)

Pros of SVI

Simple
Can tell if making progress
Can use minibatches for fitting to large datasets

Cons of SVI

Limited flexibility of variational approximation
Can use as many parameters as needed (e.g. mixture of Gaussians)

Future week: Variational Autoencoders

This lecture covered the basics of gradient-based stochastic variational infernece. In future lectures, we'll cover a couple
more refinements:

 If our model also has some parameters we'd like to make a point estimate of , we can also optimize those
parameters to match the data at the same time as we optimize our variational posterior. For example, we might want
to tune the shape of the likelihood.

 If our likelihood depends on tons of data, both MCMC and SVI can be slow. However, SVI has a unique advantage, in
that it works without modification even if we can only get an unbiased estimate of the likelihood. This means that
we'll be able to apply SVI to posteriors conditioned on massive datasets, as long as the likelihood factorizes given
the latent variables: . In this case, we can estimate the total log-likelihood unbiasedly
by only evaluating a single randomly-chosen datapoint.

 If the true posterior factorizes given the data, we can break variational inference into a bunch of smaller problems.
But we don't have to solve them all separately. Instead, we can use a neural network to look at the data and guess
good variational parameters for each . Training such a neural network (called a recognition network) is called
amortized inference, because we spread the work out over time and get to re-use the recognition network again
later.

Putting these all together will let us train Variational Autoencoders, a state-of-the-art deep generative model. We'll get to
these after the midterm.

p(z,x|θ) θ

p(x1,x2, … ,xN |z) = ∏i p(xi|z)

z

Tutorial

Alternative Derivation of ELBO

Starting with Jenson's inequality,

if is a random variable and is a convex function.

Given that is a concave function, we have

f(E[X]) ≤ E[f(x)]

X f

log

log p(x) = log ∫ pθ(x, z)dz

= log ∫ pθ(x, z)
qϕ(z|x)

qϕ(z|x)
dz

= log E
z∼qϕ

pθ(x, z)

qϕ(z|x)

⇒ log E
z∼qϕ

pθ(x, z)

qϕ(z|x)
≥ E

z∼qϕ
log

pθ(x, z)

qϕ(z|x)

= − E
z∼qϕ

log
qϕ(z|x)

pθ(x, z)
= L(θ,ϕ;x)

https://en.wikipedia.org/wiki/Jensen%27s_inequality

Alternative Forms of ELBO and Intuitions

 The most general interpretation of the ELBO is given by

 We can also re-write 1 using entropy

 Another re-write and we arrive at

This frames the ELBO as a tradeoff. The first term can be thought of as a "reconstruction likelihood", i.e. how probable is
given , which encourages the model to choose the distribution which best reconstructs the data. The second term acts
as regularization, by enforcing the idea that our parameterization shouldn't move us too far from the true distribution.

L(θ,ϕ;x) = ELBO = − E
z∼qϕ

log
qϕ(z|x)

pθ(x, z)

L(θ,ϕ;x) = − E
z∼qϕ

log
qϕ(z|x)

pθ(x, z)

= E
z∼qϕ

log
pθ(x, z)

qϕ(z|x)

= E
z∼qϕ

log
pθ(z)pθ(x|z)

qϕ(z|x)

= E
z∼qϕ

[log pθ(x|z) + log pθ(z) − log qϕ(z|x)]

E
z∼qϕ

[log pθ(x|z) + log pθ(z)]H[qϕ(z|x)]

E
z∼qϕ

[log pθ(x|z)]− KL(qϕ(z|x)||pθ(z))

x

z

Score Function Gradient Estimator

Also called the likelihood ratio, or REINFORCE, was independently developed in 1990, 1992, 2013, and 2014 (twice). It is
given by

if we assume that is a continous function of , then

using the log-derivative trick :

where is the score function. Finally, we have

which is unbiased, but high variance.

∇ϕEz∼qϕ(z)f(z) = ∇ϕ ∫ f(z)qϕ(z)dz

qϕ(z) ϕ

= ∫ ∇ϕf(z)qϕ(z)dz

= ∫ f(z)∇ϕqϕ(z)dz

(∇ϕ log qϕ =
∇ϕqϕ
qϕ

)

= ∫ f(z)qϕ(z|x)∇ϕ[log qϕ(z|x)]dz

= Ez∼qϕ(z)[f(z)∇ϕ[log qϕ(z|x)]]

qϕ(z|x)

∇ϕL(ϕ;x) = Ez∼qϕ(z)[(log pθ(x, z) − log qϕ(z|x))∇ϕ[log qϕ(z|x)]]

http://blog.shakirm.com/2015/11/machine-learning-trick-of-the-day-5-log-derivative-trick/

