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Recap PPCA, extend to non-linear, non-Gaussian

Recap variational inference, extend to per-
datapoint latent variables

Train a neural network to help us optimize the
ELBO for each datapoint faster

Extension to time-series models



Variational Inference

* Optimize a tractable distribution g(z|x) to match p(z|x)

* Main difficulty: Measure difference between q(z|x)
and p(z|x) using only cheap operations.

* By assumption, we can’t sample from p(z|x) or
evaluate its normalized density. We can:

* Sample from g(z|x) and evaluate its density

* Evaluate density p(x, z) (or unnormalized p(z|x))



Variational Inference

* Directly optimize the parameters phi of an
approximate distribution g(z|x, phi) to match p(z|x,
theta)

 What it there is a local latent variable per-datapoint,
and some global parameters? e.g. Bayesian PCA,
generative image models, topic models

* Directly optimize the parameters phi_i of each
approximate distribution g(z_i|x_i, phi_i) to match
p(z_i|x_i, theta)



ADVI Algorithm:

e Loop:
« 1. Sample z ~ g(z|x, phi)

o 2. Compute gradient w.r.t phi of
log p(z, x) - log g(z | x_i, phi)

« Update phi with gradient
» Eventually gives phi = local argmin KL(g(z|x)||p(z|x))

* |n this setting, only one set of latent params z, as in a
Bayesian neural net



ADVI| with per-data latents:

Loop:
1. Sample x_i from dataset
2. phi_i = argmin KL(g(z_i[x_i, phi_i)|| p(z_i|x_i, theta))
3. Sample z ~ g(z_i|x_i, phi_i)

4. Get gradient w.r.t. theta of
log p(z_i, x_i | theta) - log q(z_i | x_i, phi_i)

5. Update theta with gradient



Variational Autoencoder:

Loop:
1. Sample x_i from dataset
2. phi_l = neural_net_predict(x, phi_r)
3. Sample z ~ g(z_i|x_i, phi_i)

4. Get gradient w.r.t. theta and phi_r of
log p(z_i, x_i | theta) - log q(z_i | x_i, phi_i)

5. Update theta and phi_r with gradient



N graphical notation:

(a) SVI for 11d observations.  (b) VAE for 11d observations.

Multi-Level Variational Autoencoder: Learning Disentangled Representations from
Grouped Observations. Ryota Tomioka, Sebastian Nowozin. 2018



Conseqguences of using
encoder

Gradient updates of theta is like M-step
ohi_i = nn_predict(x, phi_r) is approximate E-step
Gradient updates of phi_r improves E-step

Don’t need to re-optimize phi_i each time theta
changes - much faster

Recognition net won't necessary give optimal
ohi_|

Can have fast test-time inference (vision)



VAE ELBO

def elbo(theta, phi, x):

z_mu, z_log_sigma = nn_predict_gaussian(phi, x) # Encode
z = sample_diag_gaussian(z_mu, z_log_sigma) # Sample
mu_X = neural_net_predict(theta, z) # Decode
logq_z = diag_gaussian_log_density(z, z_mu, z_log_sigma)

logp_z = diag_gaussian_log_density(z, 0, np.log(1.0))
logp_x_given_z = bernoulli_log_density(x, mu_x)
return np.mean(logp_x_given_z + logp_z - logq_z)

D



Show VAE demo



Simple but not obvious

e |t took a long time get here!

e Independently developed as denoising
autoencoders (Bengio et al.) and amortized
inference (many others)

e Helmholtz machine - same idea in 1995 but
used discrete latent variables



The Helmholtz Machine
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Discovering the structure inherent in a set of patterns is a fundamen-
tal aim of statistical inference or learning. One fruitful approach is to
build a parameterized stochastic generative model, independent draws
from which are likely to produce the patterns. For all but the sim-
plest generative models, each pattern can be generated in exponentially
many ways. It is thus intractable to adjust the parameters to maximize



Autoencoder Motivation

Reconstructed
o S — Ideally they are identical. ------------------ > input
x ~ x'
Bottleneck!
Encoder Decoder ,
X Z
9o fo X

An compressed low dimensional
representation of the input.

Want com paCt representahon Of data https:/lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae .html
Need to prevent enc = dec = identity.

Hack 1: Low-dim z. But what dimension?

Hack 2: Add noise to data before encoding, reconstruct original data. But
how much noise”

Hack 3: Add noise to latents after encoding, reconstruct original data.
But how much noise?


https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

Modeling idea: graphical models on latent variables,
neural network models for observations
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Composing graphical models with neural networks for structured representations
and fast inference. Johnson, Duvenaud, Wiltschko, Datta, Adams, NIPS 2016



data space latent space



Learning latent dimension

L(¢) =

Standard autoencoders require choosing latent dimension

What happens if a VAE has more than it needs?

Czgllog p(x|2)] — KL(Q¢(Z|$) [p(2))

If g(z|x) is factorized, then KL term factorizes over

dimensions, wants to make each g(z_i|x) look like p(z_i)

If a dimension doesn’t help likelihood enough, it will ‘turn

off’ and set q(z_i|x) = p(z_i), ignoring x. Then decoder can

ignore too.



Reconstructions

Start with input x
Encode and sample: z ~ q(z|x)
Decode and sample: r ~ p(x|z)
Compare x and r

If encoder is true posterior, q(z|x) = p(z|x),
then r is sampled from p(x|x) ??

Model can produce perfect p(x) and also bad reconstructions



Z doesn’t capture everythlng

(a) Multiple decoding of the same z (b) Random samples from the our Auxiliary prior

Preventing Posterior Collapse with delta-VAEs
Ali Razavi, Aaron van den Oord, Ben Poole, Oriol Vinyals, 2019




Benefits of compact latent
code

o http://www.dpkingma.com/sgvb_mnist_demo/
demo.html

 Nearby z's give similar x

 Recent work on ‘disentangling’ latent rep


http://www.dpkingma.com/sgvb_mnist_demo/demo.html
http://www.dpkingma.com/sgvb_mnist_demo/demo.html

Disentanglement







Disentanglement




OUTPUT

Tap to download.

Smiling -
Age -
Narrow Eyes O
Blonde Hair @
Beard @

https://openai.com/blog/glow/



https://openai.com/blog/glow/

Designing the Decoder

Only need p(z) and p(x|z) to be tractable

Orginally, p(x|z) = N(x | dec(z, theta), sigma I).
This is an instance of Naive Bayes.

Final step has independence assumption, causes
noisy samples, blurry means

p(X|z) can be anything: rnn, pixelRNN, real NVP,
de_convolutional net. More powerful but more
expensive to compute.



Figure 6: Samples from hierarchical PixelVAE on the 64x64 ImageNet dataset.



Designing the Decoder

e Decoder often looks like inverse of encoder

 Encoders can come from supervised learning
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lext autoencoagers

RNNs work <EOS>
linear a Decoding Decoding Decoding
< E—» LSTM [ LSTM —>{ LSTM
linear —5 Cell Cell Cell
RNNs work <EOS> RNNs work

* (Generating Sentences from a Continuous Space.
Samuel R. Bowman, Luke Vilnis, Oriol Vinyals,
Andrew M. Dal, Rafal Jozefowicz, Samy Bengio



Text VAE - Interpolation

it made me want to cry.
no one had seen him since .

s " it made me feel uneasy . he was silent for a long moment .
i want to talk to you . ) :
s : b’ no one had seen him . he was silent for a moment .
i want to be with you . : : :
s , : b the thought made me smile. it was quiet for a moment .
i do n’t want to be with you . : :
. , : the pain was unbearable . it was dark and cold .
i do n’t want to be with you . :
i el 1 the crowd was silent . there was a pause .
she did n’t want to be with him . "
the man called out . it was my turn .

the old man said .
the man asked .




What is a molecule”

Graph SMILES string

HO™ T e

CCC[C@@H](O)CC\C=C\C=C\C#CC#C\C=C\CO

oy, | COC(=0)C(\C)=C\C1C(C)(C)[C@H]1C(=0)0O[C@@H]2C(C)=C(C(=0)C2)CC=CC=C

O1C=C[C@H]([C@H]102)c3c2cc(OC)c4c30C(=0)C5=C4CCC(=0)5

OC[C@@H])(O1)[C@@H](O)[C@H)(O)[C@@H|(O)[C@@H](O)1




Repurposing text
autoencoders

O . O
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clccccecT Q O clccccect

Discrete Structure ENCODER CONTINUOUS MOLECULAR DECODER Discrete Structure

SMILES Neural Network REPRESENTATION Neural Network SMILES

Latent Space

Can be trained on unlabeled data



000 Drugs
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Map of 100,000 OLEDs
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Random Organic LEDs
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Gradient-based optimization

Property
f(z)

Latent Space
Z

Most Probable Decoding |
argmax p(*|z) |




Gradient-based optimization

Kicomet Pemwork (US™) = 0.067 oprimization 0.795 0.804
‘ ____________ > . ——————————————— > ‘

ENCODER a\  DECODER

a ‘i‘ a ¥ ‘%‘,%@ Qgﬁ s
kéi‘:;m us’) = 0.004 0.080 0.000 0.580

 Can'’t necessarily start from given molecule, need to encode/decode

 Can’t go too far from start, wander into ‘holes’ or empty regions



Fixing up the encoder with
a few steps of SVI

*

ll.
Hsvi

Semi-Amortized
Variational
Autoencoders. Yoon
Kim, Sam Wiseman,
Andrew C. Miller,

David Sontag, 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Alexander M. Rush. , M ,
5018 Figure 1. ELBO landscape with the oracle generative model as a

function of the variational posterior means i1, 2 for a randomly
chosen test point. Variational parameters obtained from VAE, SVI
are shown as uvag, usvi and the initial/final parameters from SA-
VAE are shown as po and px (along with the intermediate points).
SVI/SA-VAE are run for 20 iterations. The optimal point, found
from grid search, is shown as p*.



Encoder can look at
decodqer

e https://www.youtube.com/watch?v=/t-7MI9eKEo
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https://www.youtube.com/watch?v=Zt-7MI9eKEo

e Condition on

Semi-supervised learning

s [ 20[@ O @
d|scre.t.e lapels @ @ @ @

-ﬂ

éhbesrg r\\//vgin @‘@
integrate out Y ¥ §¥ |
when unknown @ N @ N @

https://pyro.ai/examples/ss-vae.html



https://pyro.ai/examples/ss-vae.html

Generative Model vs.
Approximate Inference Method

 Can consider generative model (decoder) on its own, and
the encoder as just a tool to speed up inference.



Recognition networks

Know p(symptoms | diseases),
need p(diseases | symptoms)

p(s| d)p(d)
> p(s|d)p(d)

Too many possible combinations to compute
exactly

Bayes’ rule; p(d]|s) =

Train a net to approximate p(disease | symptoms):
aka a “recognition net’



Denton & Fergus, 2018

Inference Generation Generation
(fixed prior) (learned prior)

PAX I X1 Z,,) PAX | Xy Z,)

Ground
truth




| earning outcomes

e Amortized inference

e How to train a VAE

* Separation between model (decoder) and
approximate inference strategy (encoder)



Generative Model Families

Variational Autoencoders  x ~ py(x|z), px) = |px|2)p(2)dz

Y

Autoregressive Models:
[STMs, NICE, PixelRNN — ; ~ pg(x; [ x.),  p(x) = [ [ pylxi1x2)
i

nvertible models:

Normalizing flows, -1
zeal NVP. FFJORD X =Jp(2),  p(x) =P(Z)|det(vzf9)|

implicit models (GANs) X =fo(2), pO) & Dy0)Pge(x)



