
Week 11 Amortized Inference and Variational Auto
Encoders
Using HMC to infer transmission + death rates for COVID paper

External Resources

Keras Blog on autoencoders.
Blog on VAEs.
Blog on the intuitive understanding of VAEs.
The original VAE paper (which assignment 3 is based on) and a video explanation.
Blog on the reparameterization trick.
Paper on lower-variance gradients

Recap: latent variable models
Writing down a generative model  is a simple, interpretable and powerful way to specify a complicated joint
distribution .

Examples
Trueskill gives a joint distribution over game outcomes. Can interpret posterior over latent quantities as a belief state
about skills given games.
Personality models (e.g. Big 5 traits) (z = personality, x is behavior), aka factor analysis.
Item Response Theory,
Latent Growth models.

pθ(x|z), pθ(z)

p(x)

https://www.medrxiv.org/content/10.1101/2020.03.04.20031104v1.full.pdf
https://blog.keras.io/building-autoencoders-in-keras.html
https://mohitjain.me/2018/10/26/variational-autoencoder/
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://arxiv.org/abs/1312.6114
https://www.youtube.com/watch?time_continue=2&v=9zKuYvjFFS8
https://medium.com/@llionj/the-reparameterization-trick-4ff30fe92954
http://papers.nips.cc/paper/7268-sticking-the-landing-simple-lower-variance-gradient-estimators-for-variational-inference
https://en.wikipedia.org/wiki/Latent_variable_model


What's easy?
Sampling  and , and , 
Evaluating  and , and , including e.g. 

What's hard?
Sampling  or 
Evaluating  or , 

 (and simple MC will have high variance)
 (need posterior)

Recap: Stochastic variational inference
To approximate :

 Introduce a variational family  with parameters .
 Minimize KL divergence between  and .

Big distinction between model  and approximate inference strategy. Can use different approx. inf. for same model
(such as MCMC or loopy belief propagation), even ones that weren't invented when you wrote down the model!

This is equivalent to maximizing a lower bound on the log marginal likelihood :

We'll want to optimize using stochastic unbiased gradients from simple Monte Carlo. We can use thereparameterization
trick 
to bring the gradient inside the expectation:

z ∼ p(z) x ∼ p(x|z) x, z ∼ p(x|z) x ∼ p(x)

p(z) p(x|z) p(x|z) p(x1,x2|x3,x4)

z ∼ p(z|x) x1,x2 ∼ p(x1,x2|x3,x4)

p(z|x) p(x1,x2|x3,x4) p(x)

p(x) = ∫ p(x|z)p(z)dz

p(x1,x2|x3,x4) = ∫ p(x1,x2|z)p(z|x3,x4)dz

p(z|x) = p(x,z)
∫ p(x,z)dz

p(x|z)

qϕ(z|x) ϕ

p(z|x) qϕ(z|x)

p(x, z)

log p(x)

log p(x) ≥ ∇ϕL(ϕ) = ∇ϕEz∼qϕ(z|x)[ log p(x, z) − log qϕ(z|x)]

https://medium.com/@llionj/the-reparameterization-trick-4ff30fe92954


Per-example latent variable models
In the Trueskill model, there is one big vector of s, and one big list of game outcomes . 
The graphical model for Trueskill is just one big z to one big z. 
The graphical model for the approximate posterior is just z.

What about our personality quiz example? E.g. there are N people each of whom takes a quiz with D questions. And we
assume each person has an a priori indepedently distributed, Q-dimensional vector that specifies their personality. 
Then there is a separate  vector for each  vector. 
The graphical model will have a plate.

∇ϕL(ϕ) = ∇ϕEz∼qϕ(z|x)[ log p(x, z) − log qϕ(z|x)] = ∇ϕEϵ∼p(ϵ)[ log p(x,T (ϕ, ϵ)) − log qϕ(T (ϕ, ϵ)|x)] = Eϵ∼p(ϵ)∇ϕ[ log p(x,T (ϕ, ϵ)) − log qϕ(T

z x

z x



The true posterior in this model factorizes over people. 
But now we have N true posteriors to approximate. 
How could we do efficient approximate inference in this setting?

Motivation #1 SVI on a per-example LVM doesn't scale to large data

This argument is a bit involved, so feel free to zone out.

We could simply do SVI on everyone's  vectors all at once on each iteration of gradient descent. 
Each person would have a . 
The graphical model would also have a plate. 
This is a good strategy for a small N. 
However, if N is large, we want to be able to subsample the data. 
However, in this case, we would have one global  and a separate approximate posterior  for each person. 
If we subsampled one out of a thousand people each time we updated , then each  would be a thousand steps
out of date. 
Keep in mind that the true posterior will change shape as the model parameters  change. 
So the gradients that  would get will be for a very poor approximate posterior. 
We could stop and optimze each  for a while before we get the gradient for , but this would also be slow.

We want to be able to somehow keep all the approximate posteriors in sync, without optimizing all of them whenever we
update .

Motivation #2 People can learn to recognize what's going on from partial evidence

For example, with enough experience, doctors, plumbers, detectives, etc. can very quickly tell what is going on and what
they still need more information about, if they've seen enough similar situations. 
Perhaps we could somehow train a neural network to look at the data for a person , and then output an approximate
posterior ?

Amortized Inference

z
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θ qϕi
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θ qϕi
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θ

θ
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"Amortize" just means "spread out a cost over time". Instead of doing SVI from scratch every time we see a new
datapoint, we're going to try to gradually learn a function that can look at the data for a person , and then output an
approximate posterior . 
We'll call this a "recognition model" 
Instead of a separate  for each data example, we'll just have a single global  that specifies the parameters of the
recognition model. 
Because the relationship between data and posteriors is complex and hard to specify by hand, we'll do this with a neural
network!

We've already seen one way to specify a probability distribution given an input with neural networks. We can simply have
a network take in , and output the mean and variance vector for a Gaussian:

The graphical model for this recognition model has the  outside the plate.

The algorithm for amortized inference looks like:

 Sample a datapoint
 Compute params of approximate posterior (recognition)
 Compute gradient of Monte Carlo estimate of ELBO wrt phi.
 Update phi

Then, when we want to make predictions about a new datapoint, we can use our fast recognition model if we want! 
Of course, we might also want to stop and do something slower but more accurate, like per-example SVI, or MCMC.

Also optimizing model parameters.

If  depends on parameters , then the ELBO is a function of both, and we can optimize them together:

In the trueskill example, this would let us learn the shape of the likelihood function, for example:

xi

qϕ(zi|xi)

ϕi ϕ

xi

qϕ(zi|xi) = N (zi|μϕ(xi), Σϕ(xi))

ϕ

log pθ(x) θ

∇θ,ϕL(ϕ) = ∇θ,ϕEz∼qϕ(z|x)[ log pθ(x, z) − log qϕ(z|x)] = Eϵ∼p(ϵ)∇θ,ϕ[ log pθ(x,T (ϕ, ϵ)) − log qϕ(T (ϕ, ϵ)|x)]



Thus we can jointly fit the model parameters and the recognition network, by subsampling training examples and using
simple Monte Carlo with stochastic gradient descent.

This is called a variational autoencoder (VAE. 
we'll explain the name next.

Sometimes people draw the recognition graphical model on top of the generative model, giving this confusing diagram:

!!! cite 
Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 2013.

Example: MNIST

Let's give an explicit model for MNIST images of handwritten digits.

p(i beats j|zi, zj) =
1

1 + exp(−θ(zi, zj)

https://en.wikipedia.org/wiki/Autoencoder#Variational_autoencoder_(VAE)
https://arxiv.org/abs/1312.6114


We will choose our prior on  to be the standard Gaussian with zero mean and unit variance

our likelihood function to be

and our approximate posterior to be

Finally, we use neural networks as our encoder and decoder

Encoder: 

Decoder: 

Where  are the Bernoulli means for each pixel in the input. To see a "reconstructed" input, we can plot .

The entire model looks like:

!!! cite 
Variational Autoencoder Explained.

z

N (0, I)

pθ(xi|zi) =
D

∏
d=1

Ber(xid|μθ(zi))

qϕ(z|x) = N (μ(x),σ(x)I)

gϕ(xi) = ϕi = [ui, logσi]

fθ(zi) = θi

μi μi

https://mohitjain.me/2018/10/26/variational-autoencoder/


Where inputs  are encoded to vectors  and , which parameterize . Before decoding, we draw a sample 
 and evaluate its likelihood under the model with . We compute the loss function 

 and propagate its derivative with respect to  and , , , through the network during training.

Show Autograd VAE demo

Alternate derivation: Autoencoders
An autoencoder takes an input, encodes it into a vector, then decodes to produce something similar to the original data. 
Or: autoencoders reconstruct their own input using an encoder and a decoder.

Encoder $g(x) \rightarrow z $

Decoder: 

The encoder, , takes in the input data (such as an image) and outputs a single value for each encoding dimension
while the The decoder,  takes this encoding and attempts to recreate the original input.

Our goal is to learn  from unlabeled data, and usually we specify f and g with neural networks, and minimize squared
reconstruction error.

xi μ logσi qϕ(z|x)

z ∼ qϕ(z|x) = N (μ(x),σ(x)I) pθ(x|z)

L(θ,ϕ;x) θ ϕ ∇θL ∇ϕL

f(z) → x̂

g(x)

f(z)

g, f

https://github.com/HIPS/autograd/blob/master/examples/variational_autoencoder.py
https://en.wikipedia.org/wiki/Autoencoder


 is the code the model attempts to compress a representation of the input, , into. 
For deterministic autoencoders, it's important that this code is a bottleneck, i.e. that

as this forces the encoder to reduce the dimension, for example by learning how to ignore noise (otherwise, we would just
learn the identify function). The big idea is that the code contains only the most important features of the input, such that
we can reconstruct the input from the code reliably

z x

dim F < dim X

~x = f(g(x)) ≈ x



Problems with Deterministic Autoencoders

There are two main problems with deterministic autoencoders.

Problem 1 Proximity in data space does not mean proximity in feature space

The embeddings (or codes) learned by the model are deterministic, i.e.

but proximity in feature space is not enforced for inputs in close proximity in data space, i.e.

If the space has regions where no data gets encoded to, and you sample/generate a variation from there, the decoder will
simply generate an unrealistic output, because the decoder has no idea how to deal with that region of the latent space.
During training, it never saw encoded vectors coming from that region of latent space.

Adding noise to autoencoders:
Low-dim z. But what dimension?
Can add noise to data before encoding, reconstruct original data. But how much noise?
Can add noise to latents after encoding, reconstruct original data. But how much noise?

Variational Autoencoders (VAEs)
This stochastic generation means, that even for the same input, while the mean and standard deviations remain the same,
the actual encoding will somewhat vary on every single pass simply due to sampling.

Why does a VAE solve the problems of a deterministic autoencoder?

The VAE generation model learns to reconstruct its inputs not only from the encoded points but also from the area around
them. This allows the generation model to generate new data by sampling from an “area” instead of only being able to
generate already seen data corresponding to the particular fixed encoded points.

g(x1) = z1 ⇒ f(z1) = ~x1g(x2) = z2 ⇒ f(z2) = ~x2

z1 ≈ z2 ⇏ x1 ≈ x2



What can we do with a latent variable model?
If a latent variable model has a compact prior and vector-valued s, we can:

Sample new data to check the model
Encode (sample from the approximate posterior) of two datapoints, and interpolate between them in the latent
space, then decode along the path
Learn a function to predict some property of the examples from the low-dimensional z space instead of directly from
x. Semi-supervised learning)

Tutorial
Consequences of using amortized inference

Gradient updates of theta is like M-step . recognition network gives approximate E-step.  Gradient updates of phi_r
improves E-step
Don’t need to re-optimize phi_i each time theta changes - much faster
Recognition net won’t necessary give optimal phi_i
Can have fast test-time inference (vision)

Semi-amortized inference:
There's no reason why we can't use a recognition network to initialize q, then take a few steps of SVI.

Alternate forms of the ELBO
We also talked about two other alternative forms or "intuitions" of the ELBO:

z

L(θ,ϕ;x) = Ezϕ∼qϕ[ log pθ(x|z) + log pθ(z) − log qϕ(z|x)] = Ezϕ∼qϕ[ log pθ(x|z)] − DKL(qϕ(z|x)||pθ(z))



The second of which (intuition 3 is the loss function we use for training VAEs. Notice now that the first term corresponds
to the likelihood of our input under the distribution decoded from  and the second term the divergence of the
approximate distribution posterior from the prior of the true distribution.

!!! note 
The second terms acts a regularization, by enforcing the idea that our parameterization shouldn't move us too far from
the prio distribution. Also note that this term as a simple, closed form if the posterior and prior are Gaussians.

Automatically choosing latent dimension
Standard autoencoders require choosing latent dimension 
What happens if a VAE has more than it needs? 
If q(z|x) is factorized, then KL term factorizes over dimensions, wants to make each q(z_i|x) look like p(z_i). 
If a dimension doesn’t help likelihood enough, it will ‘turn off’ and set q(z_i|x) = p(z_i), ignoring x. Then decoder can ignore
too.

z


