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What are Neural Networks

Neural networks are what we commonly call any differentiable
function that can be expressed as a computation graph. Each node is a
primitive operation (e.g. matrix multiplication) and edges represent
data flow. In particular, a simple (and quite common) case is where
this graph is a chain. Individual nodes, or pre-defined sequences are
often referred to as layers
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Building Blocks of Neural Networks

Linear (Feed Forward) Layers - is the simplest possible type of
layer, it consists of 2 operations:

e Matrix multiplication
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Building Blocks of Neural Networks

Linear (Feed Forward) Layers - is the simplest possible type of
layer, it consists of 2 operations:
e Matrix multiplication
e Vector addition U / [ |
w=f(z;0)=Wzx+b

where 6 is the set of parameters {W, b}
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Building Blocks of Neural Networks

e What would happen if we followed up a Linear Layer by another
linear layer?

y = flg(x; ‘91* t2) = W2tW133 +b1) + b2 =
= (WoW1)x + (Waby + b9)
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Building Blocks of Neural Networks

e What would happen if we followed up a Linear Layer by another
linear layer?

y = f(g(z;01);02) = Wa(Wix +b1) + b2 =
= (WoWq)x + (Waby + bo)
Ok, not very useful. Is there anything we can do about it? Yes, to get

more expressive power, we can apply a non-linear (element-wise)
transformation. We call these functions Activation functions. Some

common examples include:

o Rectified Linear Unit: ¢(x) = max( o z) QcLU
yﬁfx) : \’/ %:@(qﬁ(g(x;&));&\
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Building Blocks of Neural Networks

e What would happen if we followed up a Linear Layer by another
linear layer?

y = f(g(z;01);02) = Wo(Wiz +b1) + by =
= (WQWl)ZE + (Wle -+ bg)

Ok, not very useful. Is there anything we can do about it? Yes, to get
more expressive power, we can apply a non-linear (element-wise)
transformation. We call these functions Activation functions. Some
common examples include:
e Rectified Linear Unit: ¢(x) = max(0,x)
o Sigmoid: ¢(z) = o() c%(@; ~
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Activations Examples

Neural Network Activation Functions

ReLU
Binary Step Function Linear
)
Leaky ReLU
Tanh N
an! Sigmoid / Logistic
max(01+x

SELU

Parametric ReLU ELU
fly)
fly) =y [
s 3 3 s
v [
05
fly)=ay s
25
ELU (a=1) + Derivative GELU
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Building Blocks of Neural Networks

If we begin stacking large number of layers together, the signal may get
squashed to zero, or blow up to infinity. Similar problem often happens
during the gradient computation back through the graph.
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Building Blocks of Neural Networks

If we begin stacking large number of layers together, the signal may get
squashed to zero, or blow up to infinity. Similar problem often happens
during the gradient computation back through the graph. To reduce
the effect of those problems we often propagate the signal to layers
further downstream, in what are called residual connections

/
x —_— Linear Layer — —_— ° —_— Y

y = f(w:0) =@(Wa £b) +
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Building Blocks of Neural Networks

When it comes to modelling sequences (e.g. text, or time series data),
it is often useful to make the model stateful in order for it to help
”carry” the information through the graph. To do that we simply add
a state at timepoint ¢: s;, and computing the output and the new state
using some function:
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When it comes to modelling sequences (e.g. text, or time series data),
it is often useful to make the model stateful in order for it to help
”carry” the information through the graph. To do that we simply add
a state at timepoint ¢: s;, and computing the output and the new state
using some function:

(y7 St—l-l) — f(aja St)

This is then called a recurrent layer.
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Building Blocks of Neural Networks

When it comes to modelling sequences (e.g. text, or time series data),
it is often useful to make the model stateful in order for it to help
”carry” the information through the graph. To do that we simply add
a state at timepoint ¢: s;, and computing the output and the new state
using some function:

(y7 St—l-l) — f(xa St)

This is then called a recurrent layer.
St+1

Y
4 4 4
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Figure 16.8: Recurrent layer.
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Common Architectures

PR

A very common type of neural net architecture is a Feed Forward
Neural Network, also sometimes called a Multi Layer ML {
Perceptron. It simply consists of a sequence of linear (FF) layers,

with nonlinearities between them.
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Common Architectures

A very common type of neural net architecture is a Feed Forward
Neural Network, also sometimes called a Multi Layer
Perceptron. It simply consists of a sequence of linear (FF) layers,
with nonlinearities between them. Y

-

y
f(z;0) = o(Wr(@(Wr—1(¢(Wr—2(...) +br—2)) +br—1)) +bL)
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Common Architectures

If we use recurrent layers in our neural network, the outcome is what
we typically call a Recurrent Neural Network, (of which there are

many variants). In the simplest possible option the function f(x, hﬁ is
a simple FFNN. ;
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Common Architectures

If we use recurrent layers in our neural network, the outcome is what
we typically call a Recurrent Neural Network, (of which there are
many variants). In the simplest possible option the function f(x,h) is
a simple FFNN. When training RNNs each item in a sequence is used
as input, however during inference each item in the sequence will

depend on previous predictions.

Figure 16.12: Illustration of a recurrent neural network (RNN). (a) With self-loop. (b) Unrolled in time.
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Attention is all you need

What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once?
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What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once? We could
combine all the previous hidden states. But can we do better? We can
score each of the hidden states by how well it is associated with the
state we will be predicting. At a high level the attention mechanism
consists of 3 simple steps:

1. Generate a score for each of the hidden states

2. Apply the softmax function to the scores
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Attention is all you need

What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once? We could
combine all the previous hidden states. But can we do better? We can
score each of the hidden states by how well it is associated with the
state we will be predicting. At a high level the attention mechanism
consists of 3 simple steps:

1. Generate a score for each of the hidden states &=
2. Apply the softmax function to the scores

3. Multiply each of the hidden states by the output of the softmax
and add them together.
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Attention is all you need

Now the hard problem remains: how do we score each of the hidden
states?
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Attention is all you need

Now the hard problem remains: how do we score each of the hidden
states? We will begin by creating 3 separate embeddings from each of
our inputs, by simply multipling them by (learned) matrices:

q= W<
[K
k = VVL €T
v=wWV"z
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Attention is all you need

Now the hard problem remains: how do we score each of the hidden
states? We will begin by creating 3 separate embeddings from each of
our inputs, by simply multipling them by (learned) matrices:

. ey,
¢=Wrz Xd 1 Xy
E=WEgy - —

Where « is the scoring function.
5\
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(Dot product) Attention is all you need
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(Dot product) Attention is all you need

Attn(q, k,v) Zozz q, k

The most common choice of the attention function is called the dot
product attention. We obtain the scores by a normalized dot
product of the k and ¢ vectors.
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(Dot product) Attention is all you need

Attn(q, k,v) Zozz q, k

The most common choice of the attention function is called the dot

product attention. We obtain the scores by a normalized dot
product of the k and ¢ vectors.

T Vd b4
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(Dot product) Attention is all you need

Attn(q, k,v) Zozz q, k

The most common choice of the attention function is called the dot
product attention. We obtain the scores by a normalized dot
product of the k and ¢ vectors.

T
b(q7 k) — %

where d is a normalizing constant, usually the dimensionality of the
vectors. We then set our attention weights a; to be the softmax of all
the scores:
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(Dot product) Attention is all you need

Attn(q, k,v) Zozz q, k

The most common choice of the attention function is called the dot
product attention. We obtain the scores by a normalized dot
product of the k and ¢ vectors.

qu [/

Vd

where d is a normalizing constant, usually the dimensionality of the
vectors. We then set our attention weights a; to be the softmax of all

the scores: (b(g. }))
€x y vy

(l\ B Z;nzl exp(b(g, kj))

b(q7 k) —
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(Dot product) Attention is all you need

The entire process then reduces to:

Mo (9, & jvﬁ G v
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(Dot product) Attention is all you need

WK

The entire process then reduces to: oL
v

L
Y = Attn(Q, K, V) — a(Qj;T

WV X

1%

wexwkx)t
Vd

7

= o(
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(Dot product) Attention is all you need

The entire process then reduces to:

_ _ QK"
Y _Amf(Q K,V)=0( \/g 1%
B WQX(WKX)
= o( 7 )W X
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Attention Visualization
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Connection to GPs

Going back to noniparametric kerr?l based methods (e.g. GPs), we
compare the input = to each of the training examples X using a kernel
to get a vector of similarity scores o = | K (2, 2;)|™, which we then use
to retrieve a weighted combination/of the corresponding target values
Y; as :
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compare the input = to each of the training examples X using a kernel
to get a vector of similarity scores a = |K(«, z;)|"{, which we then use
to retrieve a weighted combination of the corresponding target values

Y; as : | 1
m
R v
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i=1
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Connection to GPs

Going back to non-parametric kernl based methods (e.g. GPs), we
compare the input = to each of the training examples X using a kernel
to get a vector of similarity scores a = |K(«x, z;)|"{, which we then use
to retrieve a weighted combination of the corresponding target values

y; as
m
@:Z zyz

If we replace the stored examples matrix X with a learned embedding
K = WEX, stored outputs with V = W'Y, and create an input
embedding ¢ = ﬁx, we can arrive at attention!
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Multi Head Attention and Self Attention

VL],

In practice it is advantaé;eous to l;ave multiple”

each
with a different set of V[({Q, I/I{AK , WV matrices. > [ Um W
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e Why do you think that is? C KS“Z \> S 21
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In practice it is advantageous to have multiple ”attention heads” each
with a different set of WQ, WX WV matrices.

e Why do you think that is?

@ Do we really need all of them?
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Multi Head Attention and Self Attention

In practice it is advantageous to have multiple ”attention heads” each
with a different set of WQ, WX WV matrices.
e Why do you think that is?
@ Do we really need all of them?

We then simply concatenate the outputs of all of the attention heads
together and multiplied by one final matrix W© that is learned as well,
this is called Multi Head Attention.

\

y
6= MHA(Q,K,V) = Concat(hy,. .

/[ Jd 5
)W /

= Concat(Attn(Qr, K1, V1), ..., Attn(Qp, Kn, V3,) ) W©

L

b
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Y
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Multi Head Attention and Self Attention

In practice it is advantageous to have multiple ”attention heads” each
with a different set of WQ, WX WV matrices.

e Why do you think that is?
@ Do we really need all of them?

We then simply concatenate the outputs of all of the attention heads
together and multiplied by one final matrix W© that is learned as well,
this is called Multi Head Attention.

D“cq MHA(Q,K,V) = Concat(hy, . .., hy)W© s

-
m% ,Attn(Qh,Kh,Vh))WO

Additionally, we can stack several identical Attention / MHA blocks on
top each other. This is called Self-Attention
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MHA Illustration@q L‘Z]ﬂ @ .
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Transformer

First proposed in a 2017 paper ” Attention is all you need”, the
Transformer architecture consists of two stacks (called Encoder and
Decoder) of blocks:
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Transformer

First proposed in a 2017 paper ” Attention is all you need”, the
Transformer architecture consists of two stacks (called Encoder and

Decoder) of blocks:

Qutput
Probabilities

Linear

T é \l/ Add & Norm J
(/l( O e\f‘ Feed DgC_O 6(/\
Forward
—] T )
/_H | Add & Norm |<s
Lalli ey Multi-Head
N~ Feed Attention L
Forward ) ) Nx
Y
Nix Add & Norm
f—>| Add & Norm | NiasReT
Multi-Head Multi-Head
Attention Attention
At )
L \_ ) )
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.
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Transformer

The Encoder consists of a stack of 6 blocks. Each block is further

split into two _distinct sub-blocks. 24 2
_ ?/’l _27 Z’) /\
— P , £
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Transformer

The Encoder consists of a stack of 6 blocks. Each block is further
split into two distinct sub-blocks.

The first is a Multi Head Self Attention mechanism, and the second is
a simple FFNN. Both of the sub-blocks have a residual connection
around them, followed by normalization.
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Tran

The Encoder consists of a stack of 6 blocks. Each block is further

sformer

split into two distinct sub-blocks.
The first is a Multi Head Self Attention mechanism, and the second is

a simple FFNN. Both of the sub-blocks have a residual connection

around them, followed by normalization.
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Transformer

Similarily, the Decoder is also a stack of 6 blocks.
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Transformer

Similarily, the Decoder is also a stack of 6 blocks.

However in addition to the two sub-blocks of the encoder, it features a
3rd sub-block.
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Transformer

Similarily, the Decoder is also a stack of 6 blocks.

However in addition to the two sub-blocks of the encoder, it features a
3rd sub-block.

This 3rd sub-block performs multi-head attention over the output of
the encoder. This ”encoder-decoder attention” layer uses () from the
previous decoder layer, and K,V from the output of the encoder.
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Transformer

Similarily, the Decoder is also a stack of 6 blocks.
However in addition to the two sub-blocks of the encoder, it features a

3rd sub-block.
This 3rd sub-block performs multi-head attention over the output of
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er.~This "encoder-decoder attention” layer uses () from the
ecoder layer, and K,V from the output of the encoder.
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Transformer

What about inputs?
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What about inputs? The input embedding is a learneable ”static”
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Positional Encoding
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How to tra)in a iTransforfner
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The original Transformer model was trained on an English u—&? German
translations, where at each step the final decoder state was fed into a
simple Linear Layer followed by a softmax to produce probabilities over
next tokens.
Currently there are a large number of pre-training tasks (similar in
idea to W2V). One of the most common ones is Masked Language
Modelling, where we randomly replace 15% of tokens with ”[MASK]”,
and the goal of the model is to predict back the original token.
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Vision Transformers

Vision Transformer (ViT) Transformer Encoder
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Neural Net Demo in Jax
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https://colab.research.google.com/github/google/jax/blob/main/docs/notebooks/neural_network_with_tfds_data.ipynb

