STA 414/2104:

Statistical Methods for Machine Learning II
Week 12 Neural Networks

Michal Malyska

University of Toronto

Prob Learning (UofT)

STA414-Week 12 1/28

Today

@ What are Neural Networks?

Prob Learning (UofT)

STA414-Week 12 2 /28

Today

e What are Neural Networks?
@ Neural Network Building Blocks

Prob Learning (UofT)

STA414-Week 12 2 /28

Today

e What are Neural Networks?
@ Neural Network Building Blocks

» Linear (Feed Forward) Layers

Prob Learning (UofT)

STA414-Week 12 2 /28

Today

e What are Neural Networks?
@ Neural Network Building Blocks

» Linear (Feed Forward) Layers
» Activation Functions

Prob Learning (UofT)

STA414-Week 12 2 /28

Today

e What are Neural Networks?
@ Neural Network Building Blocks

» Linear (Feed Forward) Layers
» Activation Functions
» Residual Layers

Prob Learning (UofT)

STA414-Week 12 2 /28

Today

@ What are Neural Networks?

@ Neural Network Building Blocks

Linear (Feed Forward) Layers
Activation Functions
Residual Layers

>
>
>
» Recurrent Layers

Prob Learning (UofT)

STA414-Week 12 2 /28

Today

@ What are Neural Networks?

@ Neural Network Building Blocks

» Linear (Feed Forward) Layers
» Activation Functions

» Residual Layers

» Recurrent Layers

» Attention

Prob Learning (UofT)

STA414-Week 12 2 /28

Today

@ What are Neural Networks?

@ Neural Network Building Blocks

» Linear (Feed Forward) Layers
» Activation Functions

» Residual Layers

» Recurrent Layers

» Attention

@ Neural Networks

Prob Learning (UofT)

STA414-Week 12 2 /28

Today

@ What are Neural Networks?

@ Neural Network Building Blocks

» Linear (Feed Forward) Layers
» Activation Functions

» Residual Layers

» Recurrent Layers

» Attention

@ Neural Networks
» Feed Forward (Multi Layer Perceptron)

Prob Learning (UofT)

STA414-Week 12 2 /28

Today

@ What are Neural Networks?

@ Neural Network Building Blocks

» Linear (Feed Forward) Layers
» Activation Functions

» Residual Layers

» Recurrent Layers

» Attention

@ Neural Networks

» Feed Forward (Multi Layer Perceptron)
» Recurrent

Prob Learning (UofT)

STA414-Week 12 2 /28

Today

@ What are Neural Networks?

@ Neural Network Building Blocks

» Linear (Feed Forward) Layers
» Activation Functions

» Residual Layers

» Recurrent Layers

» Attention

@ Neural Networks

» Feed Forward (Multi Layer Perceptron)
» Recurrent
» Transformer

Prob Learning (UofT)

STA414-Week 12 2 /28

Today

@ What are Neural Networks?

@ Neural Network Building Blocks

» Linear (Feed Forward) Layers
» Activation Functions

» Residual Layers

» Recurrent Layers

» Attention

@ Neural Networks

» Feed Forward (Multi Layer Perceptron)
» Recurrent
» Transformer

@ Transformer

Prob Learning (UofT)

STA414-Week 12 2 /28

Today

@ What are Neural Networks?

@ Neural Network Building Blocks

» Linear (Feed Forward) Layers
» Activation Functions

» Residual Layers

» Recurrent Layers

» Attention

@ Neural Networks

» Feed Forward (Multi Layer Perceptron)
» Recurrent
» Transformer

@ Transformer
» Encoder

Prob Learning (UofT)

STA414-Week 12 2 /28

Today

@ What are Neural Networks?

@ Neural Network Building Blocks

» Linear (Feed Forward) Layers
» Activation Functions

» Residual Layers

» Recurrent Layers

» Attention

@ Neural Networks

» Feed Forward (Multi Layer Perceptron)
» Recurrent
» Transformer

@ Transformer

» Encoder
» Decoder

Prob Learning (UofT)

STA414-Week 12 2 /28

Today

@ What are Neural Networks?

@ Neural Network Building Blocks

» Linear (Feed Forward) Layers
» Activation Functions

» Residual Layers

» Recurrent Layers

» Attention

@ Neural Networks

» Feed Forward (Multi Layer Perceptron)
» Recurrent
» Transformer

@ Transformer

» Encoder
» Decoder
» Positional Encoding

Prob Learning (UofT)

STA414-Week 12 2 /28

What are Neural Networks

Neural networks are what we commonly call any differentiable
function that can be expressed as a computation graph. Each node is a
primitive operation (e.g. matrix multiplication) and edges represent
data flow. In particular, a simple (and quite common) case is where
this graph is a chain. Individual nodes, or pre-defined sequences are
often referred to as layers

-0 02
L

STA414-Week 12 3/28

Prob Learning (UofT)

Building Blocks of Neural Networks

Linear (Feed Forward) Layers - is the simplest possible type of
layer, it consists of 2 operations:

e Matrix multiplication

Prob Learning (UofT)

STA414-Week 12 4 /28

Building Blocks of Neural Networks

Linear (Feed Forward) Layers - is the simplest possible type of
layer, it consists of 2 operations:

e Matrix multiplication

@ Vector addition

Prob Learning (UofT)

STA414-Week 12 4 /28

Building Blocks of Neural Networks

Linear (Feed Forward) Layers - is the simplest possible type of
layer, it consists of 2 operations:

e Matrix multiplication

@ Vector addition

Prob Learning (UofT)

STA414-Week 12 4 /28

Building Blocks of Neural Networks

Linear (Feed Forward) Layers - is the simplest possible type of
layer, it consists of 2 operations:
e Matrix multiplication
e Vector addition U / [|
w=f(z;0)=Wzx+b

where 6 is the set of parameters {W, b}
o 7
Linear [

42074 - 4

P>
\V4
P~
[>
AVAS
A Ui

STA414-Week 12

Prob Learning (UofT)

4/28

Building Blocks of Neural Networks

e What would happen if we followed up a Linear Layer by another
linear layer?

y = flg(x; ‘91* t2) = W2tW133 +b1) + b2 =
= (WoW1)x + (Waby + b9)

Prob Learning (UofT)

STA414-Week 12 5/ 28

Building Blocks of Neural Networks

e What would happen if we followed up a Linear Layer by another
linear layer?

y = f(g(z;01);02) = Wo(Wiz +b1) + by =
= (WQWl)ZE + (Wle -+ bg)

Prob Learning (UofT)

STA414-Week 12 5/ 28

Building Blocks of Neural Networks

e What would happen if we followed up a Linear Layer by another
linear layer?

y = f(g(x;01); 02) = Wo(Wix + b1) + b =
= (WQWl)ZE + (Wle + bg)

Ok, not very useful. Is there anything we can do about it?

Prob Learning (UofT)

STA414-Week 12 5/ 28

Building Blocks of Neural Networks

e What would happen if we followed up a Linear Layer by another
linear layer?

y = f(g(z;01);02) = Wa(Wix +b1) + b2 =
= (WoWq)x + (Waby + bo)
Ok, not very useful. Is there anything we can do about it? Yes, to get

more expressive power, we can apply a non-linear (element-wise)
transformation. We call these functions Activation functions. Some

common examples include:

o Rectified Linear Unit: ¢(x) = max(o z) QcLU
yﬁfx) : \’/ %:@(qﬁ(g(x;&));&\

0
STA414-Week 12 5/ 28

Prob Learning (UofT)

Building Blocks of Neural Networks

e What would happen if we followed up a Linear Layer by another
linear layer?

y = f(g(z;01);02) = Wo(Wiz +b1) + by =
= (WQWl)ZE + (Wle -+ bg)

Ok, not very useful. Is there anything we can do about it? Yes, to get
more expressive power, we can apply a non-linear (element-wise)
transformation. We call these functions Activation functions. Some
common examples include:
e Rectified Linear Unit: ¢(x) = max(0,x)
o Sigmoid: ¢(z) = o() c%(@; ~
STA414-Week 12 5/ 28

Prob Learning (UofT)

Activations Examples

Neural Network Activation Functions

ReLU
Binary Step Function Linear
)
Leaky ReLU
Tanh N
an! Sigmoid / Logistic
max(01+x

SELU

Parametric ReLU ELU
fly)
fly) =y [
s 3 3 s
v [
05
fly)=ay s
25
ELU (a=1) + Derivative GELU

Prob Learning (UofT)

STA414-Week 12 6 /28

Building Blocks of Neural Networks

If we begin stacking large number of layers together, the signal may get
squashed to zero, or blow up to infinity. Similar problem often happens
during the gradient computation back through the graph.

Prob Learning (UofT)

STA414-Week 12 7 /28

Building Blocks of Neural Networks

If we begin stacking large number of layers together, the signal may get
squashed to zero, or blow up to infinity. Similar problem often happens
during the gradient computation back through the graph. To reduce
the effect of those problems we often propagate the signal to layers
further downstream, in what are called residual connections

Prob Learning (UofT)

STA414-Week 12 7 /28

Building Blocks of Neural Networks

If we begin stacking large number of layers together, the signal may get
squashed to zero, or blow up to infinity. Similar problem often happens
during the gradient computation back through the graph. To reduce
the effect of those problems we often propagate the signal to layers
further downstream, in what are called residual connections

/
x —_— Linear Layer — —_— ° —_— Y

y = f(w:0) =@(Wa £b) +

Prob Learning (UofT)

STA414-Week 12 7 /28

Building Blocks of Neural Networks

When it comes to modelling sequences (e.g. text, or time series data),
it is often useful to make the model stateful in order for it to help
”carry” the information through the graph. To do that we simply add
a state at timepoint ¢: s;, and computing the output and the new state
using some function:

Prob Learning (UofT)

STA414-Week 12 8 /28

Building Blocks of Neural Networks

When it comes to modelling sequences (e.g. text, or time series data),
it is often useful to make the model stateful in order for it to help
”carry” the information through the graph. To do that we simply add
a state at timepoint ¢: s;, and computing the output and the new state
using some function: L L [

-

(y7 St—l—l) — f(aja St)
A

Prob Learning (UofT)

STA414-Week 12 8 /28

Building Blocks of Neural Networks

When it comes to modelling sequences (e.g. text, or time series data),
it is often useful to make the model stateful in order for it to help
”carry” the information through the graph. To do that we simply add
a state at timepoint ¢: s;, and computing the output and the new state
using some function:

(y7 St—l-l) — f(aja St)

This is then called a recurrent layer.

Prob Learning (UofT)

STA414-Week 12 8 /28

Building Blocks of Neural Networks

When it comes to modelling sequences (e.g. text, or time series data),
it is often useful to make the model stateful in order for it to help
”carry” the information through the graph. To do that we simply add
a state at timepoint ¢: s;, and computing the output and the new state
using some function:

(y7 St—l-l) — f(xa St)

This is then called a recurrent layer.
St+1

Y
4 4 4
iQi 00

Figure 16.8: Recurrent layer.

Prob Learning (UofT)

STA414-Week 12 8 /28

Common Architectures

PR

A very common type of neural net architecture is a Feed Forward
Neural Network, also sometimes called a Multi Layer ML {
Perceptron. It simply consists of a sequence of linear (FF) layers,

with nonlinearities between them.
| n) i
1 M -
VoL 1 (@ d
, vl
hafy [5]7 17 4‘&
?

> p

Prob Learning (UofT)

STA414-Week 12 9 /28

Common Architectures

A very common type of neural net architecture is a Feed Forward
Neural Network, also sometimes called a Multi Layer
Perceptron. It simply consists of a sequence of linear (FF) layers,
with nonlinearities between them. Y

-

y
f(z;0) = o(Wr(@(Wr—1(¢(Wr—2(...) +br—2)) +br—1)) +bL)

<

Prob Learning (UofT)

STA414-Week 12 9 /28

Common Architectures

If we use recurrent layers in our neural network, the outcome is what
we typically call a Recurrent Neural Network, (of which there are

many variants). In the simplest possible option the function f(x, hﬁ is
a simple FFNN. ;

Prob Learning (UofT)

STA414-Week 12 10 /28

Common Architectures

If we use recurrent layers in our neural network, the outcome is what
we typically call a Recurrent Neural Network, (of which there are
many variants). In the simplest possible option the function f(x,h) is
a simple FFNN. When training RNNs each item in a sequence is used
as input, however during inference each item in the sequence will

depend on previous predictions. é Q M
K\ [, (7
— (M
2

Prob Learning (UofT) STA414-Week 12 10 /28

Common Architectures

If we use recurrent layers in our neural network, the outcome is what
we typically call a Recurrent Neural Network, (of which there are
many variants). In the simplest possible option the function f(x,h) is
a simple FFNN. When training RNNs each item in a sequence is used
as input, however during inference each item in the sequence will

depend on previous predictions.

Figure 16.12: Illustration of a recurrent neural network (RNN). (a) With self-loop. (b) Unrolled in time.

Prob Learning (UofT)

STA414-Week 12 10 /28

/—\/\fy\—j
Xy X, Xq %y LE0s2 Y € Yy B . Ceoss

/(3 mm s /«m | LEos> {
/ d] LoL
24 ZZ 7 7 ?\3\ EH")B—A

2

Attention is all you need

What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once?

Prob Learning (UofT)

STA414-Week 12 11 /28

Attention is all you need

What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once? We could
combine all the previous hidden states. But can we do better?

Prob Learning (UofT)

STA414-Week 12 11 /28

Attention is all you need

What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once? We could
combine all the previous hidden states. But can we do better? We can
score each of the hidden states by how well it is associated with the
state we will be predicting.

Prob Learning (UofT)

STA414-Week 12 11 /28

Attention is all you need

What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once? We could
combine all the previous hidden states. But can we do better? We can
score each of the hidden states by how well it is associated with the
state we will be predicting. At a high level the attention mechanism
consists of 3 simple steps:

1. Generate a score for each of the hidden states

Prob Learning (UofT)

STA414-Week 12 11 /28

Attention is all you need

What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once? We could
combine all the previous hidden states. But can we do better? We can
score each of the hidden states by how well it is associated with the
state we will be predicting. At a high level the attention mechanism
consists of 3 simple steps:

1. Generate a score for each of the hidden states

2. Apply the softmax function to the scores

S 5 % A 14 45

= O 0s o995 o ‘O‘S 0«5

Prob Learning (UofT)

STA414-Week 12 11 /28

Attention is all you need

What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once? We could
combine all the previous hidden states. But can we do better? We can
score each of the hidden states by how well it is associated with the
state we will be predicting. At a high level the attention mechanism
consists of 3 simple steps:

1. Generate a score for each of the hidden states &=
2. Apply the softmax function to the scores

3. Multiply each of the hidden states by the output of the softmax
and add them together.

Prob Learning (UofT)

STA414-Week 12 11 /28

Attention is all you need

Now the hard problem remains: how do we score each of the hidden
states?

Prob Learning (UofT)

STA414-Week 12 12 /28

Attention is all you need

Now the hard problem remains: how do we score each of the hidden
states? We will begin by creating 3 separate embeddings from each of
our inputs, by simply multipling them by (learned) matrices:

q= W<
[K
k = VVL €T
v=wWV"z
STA414-Week 12 12 /28

Attention is all you need

Now the hard problem remains: how do we score each of the hidden
states? We will begin by creating 3 separate embeddings from each of
our inputs, by simply multipling them by (learned) matrices:

. ey,
¢=Wrz Xd 1 Xy
E=WEgy - —

Where « is the scoring function.
5\

Prob Learning (UofT)

STA414-Week 12 12 /28

(Dot product) Attention is all you need

Prob Learning (UofT)

STA414-Week 12 13 /28

(Dot product) Attention is all you need

Attn(q, k,v) Zozz q, k

The most common choice of the attention function is called the dot
product attention. We obtain the scores by a normalized dot
product of the k and ¢ vectors.

Prob Learning (UofT)

STA414-Week 12 13 /28

(Dot product) Attention is all you need

Attn(q, k,v) Zozz q, k

The most common choice of the attention function is called the dot

product attention. We obtain the scores by a normalized dot
product of the k and ¢ vectors.

T Vd b4
\

Prob Learning (UofT)

STA414-Week 12 13 /28

(Dot product) Attention is all you need

Attn(q, k,v) Zozz q, k

The most common choice of the attention function is called the dot
product attention. We obtain the scores by a normalized dot
product of the k and ¢ vectors.

T
b(q7 k) — %

where d is a normalizing constant, usually the dimensionality of the
vectors. We then set our attention weights a; to be the softmax of all
the scores:

Prob Learning (UofT)

STA414-Week 12 13 /28

(Dot product) Attention is all you need

Attn(q, k,v) Zozz q, k

The most common choice of the attention function is called the dot
product attention. We obtain the scores by a normalized dot
product of the k and ¢ vectors.

qu [/

Vd

where d is a normalizing constant, usually the dimensionality of the
vectors. We then set our attention weights a; to be the softmax of all

the scores: (b(g. }))
€x y vy

(l\ B Z;nzl exp(b(g, kj))

b(q7 k) —

Prob Learning (UofT)

STA414-Week 12 13 /28

(Dot product) Attention is all you need

The entire process then reduces to:

Mo (9, & jvﬁ G v

Prob Learning (UofT)

STA414-Week 12 14 /28

(Dot product) Attention is all you need

WK

The entire process then reduces to: oL
v

L
Y = Attn(Q, K, V) — a(Qj;T

WV X

1%

wexwkx)t
Vd

7

= o(

Prob Learning (UofT)

STA414-Week 12 14 /28

(Dot product) Attention is all you need

The entire process then reduces to:

_ _ QK"
Y _Amf(Q K,V)=0(\/g 1%
B WQX(WKX)
= o(7)W X
(E0S)

Scaled Dot-Product Attention 7(
%y %

SN M K

Mask (opt.)

Scale /\
M) % LLI l/L} QW J

14728

E
=
: ‘:|'

30,

~

STA414-Week 12 ’

Attention Visualization

=
c O
Q —
o o O 9 %)
O S S ® , & = o 2 -
o C 5 0O =« © O 5 O)
i/ I%Iru St Luw< 3 nm £ I~ V‘L/
L'ES
accord

zone
économique
européenne
a

été

signé

en

ao(t

1992

<end>

Prob Learning (UofT)

STA414-Week 12 15 /28

Connection to GPs

Going back to noniparametric kerr?l based methods (e.g. GPs), we
compare the input = to each of the training examples X using a kernel
to get a vector of similarity scores o = | K (2, 2;)|™, which we then use
to retrieve a weighted combination/of the corresponding target values
Y; as :

STA414-Week 12 16 /28

Prob Learning (UofT)

Connection to GPs

Going back to non-parametric kernl based methods (e.g. GPs), we
compare the input = to each of the training examples X using a kernel
to get a vector of similarity scores a = |K(«, z;)|"{, which we then use
to retrieve a weighted combination of the corresponding target values

Y; as : | 1
m
R v
Yy = E ;Y
i=1

STA414-Week 12 16 /28

Prob Learning (UofT)

Connection to GPs

Going back to non-parametric kernl based methods (e.g. GPs), we
compare the input = to each of the training examples X using a kernel
to get a vector of similarity scores a = |K(«x, z;)|"{, which we then use
to retrieve a weighted combination of the corresponding target values

y; as
m
@:Z zyz

If we replace the stored examples matrix X with a learned embedding
K = WEX, stored outputs with V = W'Y, and create an input
embedding ¢ = ﬁx, we can arrive at attention!

STA414-Week 12 16 /28

Prob Learning (UofT)

Multi Head Attention and Self Attention

VL],

In practice it is advantaé;eous to l;ave multiple”

each
with a different set of V[({Q, I/I{AK , WV matrices. > [Um W
. 7
e Why do you think that is? C KS“Z \> S 21
7~ 7 § ¥
| — | Z
\

Prob Learning (UofT)

STA414-Week 12 17 /28

Multi Head Attention and Self Attention

In practice it is advantageous to have multiple ”attention heads” each
with a different set of WQ, WX WV matrices.

e Why do you think that is?

@ Do we really need all of them?

Prob Learning (UofT)

STA414-Week 12 17 /28

Multi Head Attention and Self Attention

In practice it is advantageous to have multiple ”attention heads” each
with a different set of WQ, WX WV matrices.

e Why do you think that is?

@ Do we really need all of them?

Prob Learning (UofT)

STA414-Week 12 17 /28

Multi Head Attention and Self Attention

In practice it is advantageous to have multiple ”attention heads” each
with a different set of WQ, WX WV matrices.
e Why do you think that is?
@ Do we really need all of them?

We then simply concatenate the outputs of all of the attention heads
together and multiplied by one final matrix W© that is learned as well,
this is called Multi Head Attention.

\

y
6= MHA(Q,K,V) = Concat(hy,. .

/[Jd 5
)W /

= Concat(Attn(Qr, K1, V1), ..., Attn(Qp, Kn, V3,)) W©

L

b
(H
[

Y

STSsS S s

(1

Prob Learning (UofT)

N

(
= (’l'L -

rr T)

M
L
A

STA414-Week 12

17 /28

Multi Head Attention and Self Attention

In practice it is advantageous to have multiple ”attention heads” each
with a different set of WQ, WX WV matrices.

e Why do you think that is?
@ Do we really need all of them?

We then simply concatenate the outputs of all of the attention heads
together and multiplied by one final matrix W© that is learned as well,
this is called Multi Head Attention.

D“cq MHA(Q,K,V) = Concat(hy, . .., hy)W© s

-
m% ,Attn(Qh,Kh,Vh))WO

Additionally, we can stack several identical Attention / MHA blocks on
top each other. This is called Self-Attention

Prob Learning (UofT)

STA414-Week 12 17 /28

MHA Illustration@q L‘Z]ﬂ @ .

0, - XU,

1) This is our 2) We embed 3) Splitinto _8_hgads. 4) Calculate attention 5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
we 'l T |
X <L C
Qo / i
\

TV o)
-]Tm

*1n all Ws other than #0, >’

we don't need embedding.
We start directly with the output

of the epg;?r right below this one ﬂ
W-Q
& Q

—

Prob Learning (UofT) STA414-Week 12 18 /28

Transformer

First proposed in a 2017 paper ” Attention is all you need”, the
Transformer architecture consists of two stacks (called Encoder and
Decoder) of blocks:

Prob Learning (UofT)

STA414-Week 12 19 /28

Transformer

First proposed in a 2017 paper ” Attention is all you need”, the
Transformer architecture consists of two stacks (called Encoder and

Decoder) of blocks:

Qutput
Probabilities

Linear

T é \l/ Add & Norm J
(/l(O e\f‘ Feed DgC_O 6(/\
Forward
—] T)
/_H | Add & Norm |<s
Lalli ey Multi-Head
N~ Feed Attention L
Forward)) Nx
Y
Nix Add & Norm
f—>| Add & Norm | NiasReT
Multi-Head Multi-Head
Attention Attention
At)
L _))
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.
Prob Learning (UofT) STA414-Week 12 19 /28

Transformer

The Encoder consists of a stack of 6 blocks. Each block is further

split into two _distinct sub-blocks. 24 2
_ ?/’l _27 Z’) /\
— P , £
s (oo |
1L IVEAR
/{'5+ ‘r-> l/\ ["2 L\} L1‘1

q 0
o h
| Sue + Morafip o 2

XQ Kz $<') ><7
Prob Learning (UofT) — STA414-Week 12 20 / 28

—
|
[T j

24 Z‘L 73 Z@

Transformer

The Encoder consists of a stack of 6 blocks. Each block is further
split into two distinct sub-blocks.

The first is a Multi Head Self Attention mechanism, and the second is
a simple FFNN. Both of the sub-blocks have a residual connection
around them, followed by normalization.

Prob Learning (UofT)

STA414-Week 12 20/ 28

Tran

The Encoder consists of a stack of 6 blocks. Each block is further

sformer

split into two distinct sub-blocks.
The first is a Multi Head Self Attention mechanism, and the second is

a simple FFNN. Both of the sub-blocks have a residual connection

around them, followed by normalization.

Nx

4)
Add & Norm

Feed
Forward

 ——

f—>| Add & Norm l

Multi-Head
Attention

.

1t

J

Prob Learning (UofT)

STA414-Week 12

20 / 28

Transformer

Similarily, the Decoder is also a stack of 6 blocks.

Prob Learning (UofT)

STA414-Week 12 21 /28

Transformer

Similarily, the Decoder is also a stack of 6 blocks.

However in addition to the two sub-blocks of the encoder, it features a
3rd sub-block.

Prob Learning (UofT)

STA414-Week 12 21 /28

Transformer

Similarily, the Decoder is also a stack of 6 blocks.

However in addition to the two sub-blocks of the encoder, it features a
3rd sub-block.

This 3rd sub-block performs multi-head attention over the output of
the encoder. This ”encoder-decoder attention” layer uses () from the
previous decoder layer, and K,V from the output of the encoder.

STA414-Week 12 21 /28

Prob Learning (UofT)

Transformer

Similarily, the Decoder is also a stack of 6 blocks.
However in addition to the two sub-blocks of the encoder, it features a

3rd sub-block.
This 3rd sub-block performs multi-head attention over the output of

the en

pr

Add & Norm

N
\ |

Feed
Forward

Add & Norm

Multi-Head
Attention

i

)

A

Add & Norm

rfaskedt—
Multi-Head
Attention

\.

1t

—

K >w?€2@
A

T

v

(((Eos) /L(;m> l/\9\7

Prob Learning (UofT)

er.~This "encoder-decoder attention” layer uses () from the
ecoder layer, and K,V from the output of the encoder.

i V
T

[T
"

7

(/W/ Nome LS ﬂ/’z@lémpl%w
f

STA414-Week 12 21 /28

~

Transformer

What about inputs?

Prob Learning (UofT)

STA414-Week 12 22 /28

Transformer

What about inputs? The input embedding is a learneable ”static”
token embedding similar to the Word2Vec model we have seen in the

lecture 9. /
(1/ Vv
. |0 ~
b - | ([
)

Prob Learning (UofT)

STA414-Week 12 22 /28

Transformer

What about inputs? The input embedding is a learneable ”static”
token embedding similar to the Word2Vec model we have seen in the
lecture 9.

What is ”Positional Encoding?”

Prob Learning (UofT)

STA414-Week 12 22 /28

Transformer

What about inputs? The input embedding is a learneable ”static”
token embedding similar to the Word2Vec model we have seen in the
lecture 9.

What is ”Positional Encoding?” It’s either a learneable (representing
position in a sequence) embedding, or a predefined embedding of
different.

Prob Learning (UofT)

STA414-Week 12 22 /28

Transformer

What about inputs? The input embedding is a learneable ”static”
token embedding similar to the Word2Vec model we have seen in the
lecture 9.

What is ” Positional Encoding7” It’s either a learneable (representing
position in a sequence) embedding, or a predefined embedding of
different.

Eositio.nal @_% (EO__S < B T~
ncoding /@\ / N\ /
0 \\8~/ . /

Input 7
Embedding

!
E [.I(/lnputs / -

(

X o C(~ /] L)
Prob Learning (UofT) STA414-Week 12 22 /28

Positio

b

= -

4

10

1"

12

13

&

4

“

15

16

7

&

8

18

19

~ssAnsneIaRasReaRanggE 25 §AS HAREEE AHASAARERRARRRARAR AR RABREBRRERTRORAEEHARAEIE20O0EISOUSOREIINTRBIC

8
ith an embeddina size of 512 (columns). You can see that it appears split in
STA414-Week 12 28 / 28

Positional Encoding

|

0 10

Token Position
~ o (%] > w ~N - o

@

w

(UofT)

Prob Learning

100

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

30
Embedding Dimension

STA414-Week 12 24 / 28

How to tra)in a iTransforfner

Z):“TQK o ?} o
l

&
The original Transformer model was trained on an English u—&? German
translations, where at each step the final decoder state was fed into a
simple Linear Layer followed by a softmax to produce probabilities over
next tokens.
Currently there are a large number of pre-training tasks (similar in
idea to W2V). One of the most common ones is Masked Language
Modelling, where we randomly replace 15% of tokens with ”[MASK]”,
and the goal of the model is to predict back the original token.

Prob Learning (UofT)

STA414-Week 12 25 /28

019
B QTE E
A" ——)
|] L] 7
Q (i v L‘\f
[- 6% x50 00y
LJ@ A

W%w? ﬁg cO ﬁmﬂ&rm e}

J

Y

Vision Transformers

Vision Transformer (ViT) Transformer Encoder
| s
MLP 0
i / MLP
| v

Transformer Encoder

h;z:.:m:"“\l‘@s@é@ﬁ @& o) @H@ﬁ

LHH)

Multi-Head
Attention
* Extru learnable
[€1ass] embedding Linear Pm_|ecuon of Flattened Patches
“"—»éii B (e
WEm W ,
- ! Embedded
Patches
STA414-Week 12 26/ 28

CLIP

%p
™)
~N

Pepper the
aussie pup

(I R

a8

\J
=
by
o
i
7

_J I L'T, LTy . (LT

d) L 142 7l 3 1 N‘

\\\ —= lz 'z"rl [2’T3 . lz'TN
Image I T | I,'T IyT
E » LI 3 || iz 1IN

Prob Learning (UofT) STA414-Week 12 27 / 28

Neural Net Demo in Jax

STA414-Week 12 28 / 28

https://colab.research.google.com/github/google/jax/blob/main/docs/notebooks/neural_network_with_tfds_data.ipynb

