
STA 414/2104:
Statistical Methods for Machine Learning II

Week 12 Neural Networks

Michal Malyska

University of Toronto

Prob Learning (UofT) STA414-Week 12 1 / 28

Today

What are Neural Networks?

Neural Network Building Blocks

I Linear (Feed Forward) Layers
I Activation Functions
I Residual Layers
I Recurrent Layers
I Attention

Neural Networks

I Feed Forward (Multi Layer Perceptron)
I Recurrent
I Transformer

Transformer

I Encoder
I Decoder
I Positional Encoding

Prob Learning (UofT) STA414-Week 12 2 / 28

Today

What are Neural Networks?

Neural Network Building Blocks

I Linear (Feed Forward) Layers
I Activation Functions
I Residual Layers
I Recurrent Layers
I Attention

Neural Networks

I Feed Forward (Multi Layer Perceptron)
I Recurrent
I Transformer

Transformer

I Encoder
I Decoder
I Positional Encoding

Prob Learning (UofT) STA414-Week 12 2 / 28

Today

What are Neural Networks?

Neural Network Building Blocks
I Linear (Feed Forward) Layers

I Activation Functions
I Residual Layers
I Recurrent Layers
I Attention

Neural Networks

I Feed Forward (Multi Layer Perceptron)
I Recurrent
I Transformer

Transformer

I Encoder
I Decoder
I Positional Encoding

Prob Learning (UofT) STA414-Week 12 2 / 28

Today

What are Neural Networks?

Neural Network Building Blocks
I Linear (Feed Forward) Layers
I Activation Functions

I Residual Layers
I Recurrent Layers
I Attention

Neural Networks

I Feed Forward (Multi Layer Perceptron)
I Recurrent
I Transformer

Transformer

I Encoder
I Decoder
I Positional Encoding

Prob Learning (UofT) STA414-Week 12 2 / 28

Today

What are Neural Networks?

Neural Network Building Blocks
I Linear (Feed Forward) Layers
I Activation Functions
I Residual Layers

I Recurrent Layers
I Attention

Neural Networks

I Feed Forward (Multi Layer Perceptron)
I Recurrent
I Transformer

Transformer

I Encoder
I Decoder
I Positional Encoding

Prob Learning (UofT) STA414-Week 12 2 / 28

Today

What are Neural Networks?

Neural Network Building Blocks
I Linear (Feed Forward) Layers
I Activation Functions
I Residual Layers
I Recurrent Layers

I Attention

Neural Networks

I Feed Forward (Multi Layer Perceptron)
I Recurrent
I Transformer

Transformer

I Encoder
I Decoder
I Positional Encoding

Prob Learning (UofT) STA414-Week 12 2 / 28

Today

What are Neural Networks?

Neural Network Building Blocks
I Linear (Feed Forward) Layers
I Activation Functions
I Residual Layers
I Recurrent Layers
I Attention

Neural Networks

I Feed Forward (Multi Layer Perceptron)
I Recurrent
I Transformer

Transformer

I Encoder
I Decoder
I Positional Encoding

Prob Learning (UofT) STA414-Week 12 2 / 28

Today

What are Neural Networks?

Neural Network Building Blocks
I Linear (Feed Forward) Layers
I Activation Functions
I Residual Layers
I Recurrent Layers
I Attention

Neural Networks

I Feed Forward (Multi Layer Perceptron)
I Recurrent
I Transformer

Transformer

I Encoder
I Decoder
I Positional Encoding

Prob Learning (UofT) STA414-Week 12 2 / 28

Today

What are Neural Networks?

Neural Network Building Blocks
I Linear (Feed Forward) Layers
I Activation Functions
I Residual Layers
I Recurrent Layers
I Attention

Neural Networks
I Feed Forward (Multi Layer Perceptron)

I Recurrent
I Transformer

Transformer

I Encoder
I Decoder
I Positional Encoding

Prob Learning (UofT) STA414-Week 12 2 / 28

Today

What are Neural Networks?

Neural Network Building Blocks
I Linear (Feed Forward) Layers
I Activation Functions
I Residual Layers
I Recurrent Layers
I Attention

Neural Networks
I Feed Forward (Multi Layer Perceptron)
I Recurrent

I Transformer

Transformer

I Encoder
I Decoder
I Positional Encoding

Prob Learning (UofT) STA414-Week 12 2 / 28

Today

What are Neural Networks?

Neural Network Building Blocks
I Linear (Feed Forward) Layers
I Activation Functions
I Residual Layers
I Recurrent Layers
I Attention

Neural Networks
I Feed Forward (Multi Layer Perceptron)
I Recurrent
I Transformer

Transformer

I Encoder
I Decoder
I Positional Encoding

Prob Learning (UofT) STA414-Week 12 2 / 28

Today

What are Neural Networks?

Neural Network Building Blocks
I Linear (Feed Forward) Layers
I Activation Functions
I Residual Layers
I Recurrent Layers
I Attention

Neural Networks
I Feed Forward (Multi Layer Perceptron)
I Recurrent
I Transformer

Transformer

I Encoder
I Decoder
I Positional Encoding

Prob Learning (UofT) STA414-Week 12 2 / 28

Today

What are Neural Networks?

Neural Network Building Blocks
I Linear (Feed Forward) Layers
I Activation Functions
I Residual Layers
I Recurrent Layers
I Attention

Neural Networks
I Feed Forward (Multi Layer Perceptron)
I Recurrent
I Transformer

Transformer
I Encoder

I Decoder
I Positional Encoding

Prob Learning (UofT) STA414-Week 12 2 / 28

Today

What are Neural Networks?

Neural Network Building Blocks
I Linear (Feed Forward) Layers
I Activation Functions
I Residual Layers
I Recurrent Layers
I Attention

Neural Networks
I Feed Forward (Multi Layer Perceptron)
I Recurrent
I Transformer

Transformer
I Encoder
I Decoder

I Positional Encoding

Prob Learning (UofT) STA414-Week 12 2 / 28

Today

What are Neural Networks?

Neural Network Building Blocks
I Linear (Feed Forward) Layers
I Activation Functions
I Residual Layers
I Recurrent Layers
I Attention

Neural Networks
I Feed Forward (Multi Layer Perceptron)
I Recurrent
I Transformer

Transformer
I Encoder
I Decoder
I Positional Encoding

Prob Learning (UofT) STA414-Week 12 2 / 28

What are Neural Networks

Neural networks are what we commonly call any differentiable
function that can be expressed as a computation graph. Each node is a
primitive operation (e.g. matrix multiplication) and edges represent
data flow. In particular, a simple (and quite common) case is where
this graph is a chain. Individual nodes, or pre-defined sequences are
often referred to as layers

Prob Learning (UofT) STA414-Week 12 3 / 28

Building Blocks of Neural Networks

Linear (Feed Forward) Layers - is the simplest possible type of
layer, it consists of 2 operations:

Matrix multiplication

Vector addition

x = f(x; θ) = Wx+ b

where θ is the set of parameters {W, b}

Prob Learning (UofT) STA414-Week 12 4 / 28

Building Blocks of Neural Networks

Linear (Feed Forward) Layers - is the simplest possible type of
layer, it consists of 2 operations:

Matrix multiplication

Vector addition

x = f(x; θ) = Wx+ b

where θ is the set of parameters {W, b}

Prob Learning (UofT) STA414-Week 12 4 / 28

Building Blocks of Neural Networks

Linear (Feed Forward) Layers - is the simplest possible type of
layer, it consists of 2 operations:

Matrix multiplication

Vector addition

x = f(x; θ) = Wx+ b

where θ is the set of parameters {W, b}

Prob Learning (UofT) STA414-Week 12 4 / 28

Building Blocks of Neural Networks

Linear (Feed Forward) Layers - is the simplest possible type of
layer, it consists of 2 operations:

Matrix multiplication

Vector addition

x = f(x; θ) = Wx+ b

where θ is the set of parameters {W, b}

Prob Learning (UofT) STA414-Week 12 4 / 28

Building Blocks of Neural Networks

What would happen if we followed up a Linear Layer by another
linear layer?

y = f(g(x; θ1); θ2) = W2(W1x+ b1) + b2 =

= (W2W1)x+ (W2b1 + b2)

Ok, not very useful. Is there anything we can do about it? Yes, to get
more expressive power, we can apply a non-linear (element-wise)
transformation. We call these functions Activation functions. Some
common examples include:

Rectified Linear Unit: φ(x) = max(0, x)

Sigmoid: φ(x) = σ(x) = 1
1+e−x

Prob Learning (UofT) STA414-Week 12 5 / 28

Building Blocks of Neural Networks

What would happen if we followed up a Linear Layer by another
linear layer?

y = f(g(x; θ1); θ2) = W2(W1x+ b1) + b2 =

= (W2W1)x+ (W2b1 + b2)

Ok, not very useful. Is there anything we can do about it? Yes, to get
more expressive power, we can apply a non-linear (element-wise)
transformation. We call these functions Activation functions. Some
common examples include:

Rectified Linear Unit: φ(x) = max(0, x)

Sigmoid: φ(x) = σ(x) = 1
1+e−x

Prob Learning (UofT) STA414-Week 12 5 / 28

Building Blocks of Neural Networks

What would happen if we followed up a Linear Layer by another
linear layer?

y = f(g(x; θ1); θ2) = W2(W1x+ b1) + b2 =

= (W2W1)x+ (W2b1 + b2)

Ok, not very useful. Is there anything we can do about it?

Yes, to get
more expressive power, we can apply a non-linear (element-wise)
transformation. We call these functions Activation functions. Some
common examples include:

Rectified Linear Unit: φ(x) = max(0, x)

Sigmoid: φ(x) = σ(x) = 1
1+e−x

Prob Learning (UofT) STA414-Week 12 5 / 28

Building Blocks of Neural Networks

What would happen if we followed up a Linear Layer by another
linear layer?

y = f(g(x; θ1); θ2) = W2(W1x+ b1) + b2 =

= (W2W1)x+ (W2b1 + b2)

Ok, not very useful. Is there anything we can do about it? Yes, to get
more expressive power, we can apply a non-linear (element-wise)
transformation. We call these functions Activation functions. Some
common examples include:

Rectified Linear Unit: φ(x) = max(0, x)

Sigmoid: φ(x) = σ(x) = 1
1+e−x

Prob Learning (UofT) STA414-Week 12 5 / 28

Building Blocks of Neural Networks

What would happen if we followed up a Linear Layer by another
linear layer?

y = f(g(x; θ1); θ2) = W2(W1x+ b1) + b2 =

= (W2W1)x+ (W2b1 + b2)

Ok, not very useful. Is there anything we can do about it? Yes, to get
more expressive power, we can apply a non-linear (element-wise)
transformation. We call these functions Activation functions. Some
common examples include:

Rectified Linear Unit: φ(x) = max(0, x)

Sigmoid: φ(x) = σ(x) = 1
1+e−x

Prob Learning (UofT) STA414-Week 12 5 / 28

Activations Examples

Prob Learning (UofT) STA414-Week 12 6 / 28

Building Blocks of Neural Networks

If we begin stacking large number of layers together, the signal may get
squashed to zero, or blow up to infinity. Similar problem often happens
during the gradient computation back through the graph.

To reduce
the effect of those problems we often propagate the signal to layers
further downstream, in what are called residual connections

y = f(x; θ) = φ(Wx+ b) + x

Prob Learning (UofT) STA414-Week 12 7 / 28

Building Blocks of Neural Networks

If we begin stacking large number of layers together, the signal may get
squashed to zero, or blow up to infinity. Similar problem often happens
during the gradient computation back through the graph. To reduce
the effect of those problems we often propagate the signal to layers
further downstream, in what are called residual connections

y = f(x; θ) = φ(Wx+ b) + x

Prob Learning (UofT) STA414-Week 12 7 / 28

Building Blocks of Neural Networks

If we begin stacking large number of layers together, the signal may get
squashed to zero, or blow up to infinity. Similar problem often happens
during the gradient computation back through the graph. To reduce
the effect of those problems we often propagate the signal to layers
further downstream, in what are called residual connections

y = f(x; θ) = φ(Wx+ b) + x

Prob Learning (UofT) STA414-Week 12 7 / 28

Building Blocks of Neural Networks

When it comes to modelling sequences (e.g. text, or time series data),
it is often useful to make the model stateful in order for it to help
”carry” the information through the graph. To do that we simply add
a state at timepoint t: st, and computing the output and the new state
using some function:

(y, st+1) = f(x, st)

This is then called a recurrent layer.

Prob Learning (UofT) STA414-Week 12 8 / 28

Building Blocks of Neural Networks

When it comes to modelling sequences (e.g. text, or time series data),
it is often useful to make the model stateful in order for it to help
”carry” the information through the graph. To do that we simply add
a state at timepoint t: st, and computing the output and the new state
using some function:

(y, st+1) = f(x, st)

This is then called a recurrent layer.

Prob Learning (UofT) STA414-Week 12 8 / 28

Building Blocks of Neural Networks

When it comes to modelling sequences (e.g. text, or time series data),
it is often useful to make the model stateful in order for it to help
”carry” the information through the graph. To do that we simply add
a state at timepoint t: st, and computing the output and the new state
using some function:

(y, st+1) = f(x, st)

This is then called a recurrent layer.

Prob Learning (UofT) STA414-Week 12 8 / 28

Building Blocks of Neural Networks

When it comes to modelling sequences (e.g. text, or time series data),
it is often useful to make the model stateful in order for it to help
”carry” the information through the graph. To do that we simply add
a state at timepoint t: st, and computing the output and the new state
using some function:

(y, st+1) = f(x, st)

This is then called a recurrent layer.

Prob Learning (UofT) STA414-Week 12 8 / 28

Common Architectures

A very common type of neural net architecture is a Feed Forward
Neural Network, also sometimes called a Multi Layer
Perceptron. It simply consists of a sequence of linear (FF) layers,
with nonlinearities between them.

f(x; θ) = φ(WL(φ(WL−1(φ(WL−2(. . .) + bL−2)) + bL−1)) + bL)

Prob Learning (UofT) STA414-Week 12 9 / 28

Common Architectures

A very common type of neural net architecture is a Feed Forward
Neural Network, also sometimes called a Multi Layer
Perceptron. It simply consists of a sequence of linear (FF) layers,
with nonlinearities between them.

f(x; θ) = φ(WL(φ(WL−1(φ(WL−2(. . .) + bL−2)) + bL−1)) + bL)

Prob Learning (UofT) STA414-Week 12 9 / 28

Common Architectures

If we use recurrent layers in our neural network, the outcome is what
we typically call a Recurrent Neural Network, (of which there are
many variants). In the simplest possible option the function f(x, h) is
a simple FFNN.

When training RNNs each item in a sequence is used
as input, however during inference each item in the sequence will
depend on previous predictions.

Prob Learning (UofT) STA414-Week 12 10 / 28

Common Architectures

If we use recurrent layers in our neural network, the outcome is what
we typically call a Recurrent Neural Network, (of which there are
many variants). In the simplest possible option the function f(x, h) is
a simple FFNN. When training RNNs each item in a sequence is used
as input, however during inference each item in the sequence will
depend on previous predictions.

Prob Learning (UofT) STA414-Week 12 10 / 28

Common Architectures

If we use recurrent layers in our neural network, the outcome is what
we typically call a Recurrent Neural Network, (of which there are
many variants). In the simplest possible option the function f(x, h) is
a simple FFNN. When training RNNs each item in a sequence is used
as input, however during inference each item in the sequence will
depend on previous predictions.

Prob Learning (UofT) STA414-Week 12 10 / 28

Attention is all you need

What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once?

We could
combine all the previous hidden states. But can we do better? We can
score each of the hidden states by how well it is associated with the
state we will be predicting. At a high level the attention mechanism
consists of 3 simple steps:

1. Generate a score for each of the hidden states

2. Apply the softmax function to the scores

3. Multiply each of the hidden states by the output of the softmax
and add them together.

Prob Learning (UofT) STA414-Week 12 11 / 28

Attention is all you need

What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once? We could
combine all the previous hidden states. But can we do better?

We can
score each of the hidden states by how well it is associated with the
state we will be predicting. At a high level the attention mechanism
consists of 3 simple steps:

1. Generate a score for each of the hidden states

2. Apply the softmax function to the scores

3. Multiply each of the hidden states by the output of the softmax
and add them together.

Prob Learning (UofT) STA414-Week 12 11 / 28

Attention is all you need

What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once? We could
combine all the previous hidden states. But can we do better? We can
score each of the hidden states by how well it is associated with the
state we will be predicting.

At a high level the attention mechanism
consists of 3 simple steps:

1. Generate a score for each of the hidden states

2. Apply the softmax function to the scores

3. Multiply each of the hidden states by the output of the softmax
and add them together.

Prob Learning (UofT) STA414-Week 12 11 / 28

Attention is all you need

What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once? We could
combine all the previous hidden states. But can we do better? We can
score each of the hidden states by how well it is associated with the
state we will be predicting. At a high level the attention mechanism
consists of 3 simple steps:

1. Generate a score for each of the hidden states

2. Apply the softmax function to the scores

3. Multiply each of the hidden states by the output of the softmax
and add them together.

Prob Learning (UofT) STA414-Week 12 11 / 28

Attention is all you need

What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once? We could
combine all the previous hidden states. But can we do better? We can
score each of the hidden states by how well it is associated with the
state we will be predicting. At a high level the attention mechanism
consists of 3 simple steps:

1. Generate a score for each of the hidden states

2. Apply the softmax function to the scores

3. Multiply each of the hidden states by the output of the softmax
and add them together.

Prob Learning (UofT) STA414-Week 12 11 / 28

Attention is all you need

What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once? We could
combine all the previous hidden states. But can we do better? We can
score each of the hidden states by how well it is associated with the
state we will be predicting. At a high level the attention mechanism
consists of 3 simple steps:

1. Generate a score for each of the hidden states

2. Apply the softmax function to the scores

3. Multiply each of the hidden states by the output of the softmax
and add them together.

Prob Learning (UofT) STA414-Week 12 11 / 28

Attention is all you need

Now the hard problem remains: how do we score each of the hidden
states?

We will begin by creating 3 separate embeddings from each of
our inputs, by simply multipling them by (learned) matrices:

q = WQx

k = WKx

v = W V x

We then define the Attention Layer as:

Attn(q, k, v) =
m∑
i=1

αi(q, ki)vi

Where α is the scoring function.

Prob Learning (UofT) STA414-Week 12 12 / 28

Attention is all you need

Now the hard problem remains: how do we score each of the hidden
states? We will begin by creating 3 separate embeddings from each of
our inputs, by simply multipling them by (learned) matrices:

q = WQx

k = WKx

v = W V x

We then define the Attention Layer as:

Attn(q, k, v) =

m∑
i=1

αi(q, ki)vi

Where α is the scoring function.

Prob Learning (UofT) STA414-Week 12 12 / 28

Attention is all you need

Now the hard problem remains: how do we score each of the hidden
states? We will begin by creating 3 separate embeddings from each of
our inputs, by simply multipling them by (learned) matrices:

q = WQx

k = WKx

v = W V x

We then define the Attention Layer as:

Attn(q, k, v) =

m∑
i=1

αi(q, ki)vi

Where α is the scoring function.

Prob Learning (UofT) STA414-Week 12 12 / 28

(Dot product) Attention is all you need

Attn(q, k, v) =

m∑
i=1

αi(q, ki)vi

The most common choice of the attention function is called the dot
product attention. We obtain the scores by a normalized dot
product of the k and q vectors.

b(q, k) =
qTk√
d

where d is a normalizing constant, usually the dimensionality of the
vectors. We then set our attention weights αi to be the softmax of all
the scores:

αi(q, ki) =
exp(b(q, ki))∑m
j=1 exp(b(q, kj))

Prob Learning (UofT) STA414-Week 12 13 / 28

(Dot product) Attention is all you need

Attn(q, k, v) =

m∑
i=1

αi(q, ki)vi

The most common choice of the attention function is called the dot
product attention. We obtain the scores by a normalized dot
product of the k and q vectors.

b(q, k) =
qTk√
d

where d is a normalizing constant, usually the dimensionality of the
vectors. We then set our attention weights αi to be the softmax of all
the scores:

αi(q, ki) =
exp(b(q, ki))∑m
j=1 exp(b(q, kj))

Prob Learning (UofT) STA414-Week 12 13 / 28

(Dot product) Attention is all you need

Attn(q, k, v) =

m∑
i=1

αi(q, ki)vi

The most common choice of the attention function is called the dot
product attention. We obtain the scores by a normalized dot
product of the k and q vectors.

b(q, k) =
qTk√
d

where d is a normalizing constant, usually the dimensionality of the
vectors. We then set our attention weights αi to be the softmax of all
the scores:

αi(q, ki) =
exp(b(q, ki))∑m
j=1 exp(b(q, kj))

Prob Learning (UofT) STA414-Week 12 13 / 28

(Dot product) Attention is all you need

Attn(q, k, v) =

m∑
i=1

αi(q, ki)vi

The most common choice of the attention function is called the dot
product attention. We obtain the scores by a normalized dot
product of the k and q vectors.

b(q, k) =
qTk√
d

where d is a normalizing constant, usually the dimensionality of the
vectors. We then set our attention weights αi to be the softmax of all
the scores:

αi(q, ki) =
exp(b(q, ki))∑m
j=1 exp(b(q, kj))

Prob Learning (UofT) STA414-Week 12 13 / 28

(Dot product) Attention is all you need

Attn(q, k, v) =

m∑
i=1

αi(q, ki)vi

The most common choice of the attention function is called the dot
product attention. We obtain the scores by a normalized dot
product of the k and q vectors.

b(q, k) =
qTk√
d

where d is a normalizing constant, usually the dimensionality of the
vectors. We then set our attention weights αi to be the softmax of all
the scores:

αi(q, ki) =
exp(b(q, ki))∑m
j=1 exp(b(q, kj))

Prob Learning (UofT) STA414-Week 12 13 / 28

(Dot product) Attention is all you need

The entire process then reduces to:

Y = Attn(Q,K, V) = σ(
QKT

√
d

)V

= σ(
WQX(WKX)T√

d
)W VX

Prob Learning (UofT) STA414-Week 12 14 / 28

(Dot product) Attention is all you need

The entire process then reduces to:

Y = Attn(Q,K, V) = σ(
QKT

√
d

)V

= σ(
WQX(WKX)T√

d
)W VX

Prob Learning (UofT) STA414-Week 12 14 / 28

(Dot product) Attention is all you need

The entire process then reduces to:

Y = Attn(Q,K, V) = σ(
QKT

√
d

)V

= σ(
WQX(WKX)T√

d
)W VX

Prob Learning (UofT) STA414-Week 12 14 / 28

Attention Visualization

Prob Learning (UofT) STA414-Week 12 15 / 28

Connection to GPs

Going back to non-parametric kernl based methods (e.g. GPs), we
compare the input x to each of the training examples X using a kernel
to get a vector of similarity scores α = |K(x, xi)|mi=1, which we then use
to retrieve a weighted combination of the corresponding target values
yi as :

ŷ =
m∑
i=1

αiyi

If we replace the stored examples matrix X with a learned embedding
K = WKX, stored outputs with V = W V Y , and create an input
embedding q = WQx, we can arrive at attention!

Prob Learning (UofT) STA414-Week 12 16 / 28

Connection to GPs

Going back to non-parametric kernl based methods (e.g. GPs), we
compare the input x to each of the training examples X using a kernel
to get a vector of similarity scores α = |K(x, xi)|mi=1, which we then use
to retrieve a weighted combination of the corresponding target values
yi as :

ŷ =

m∑
i=1

αiyi

If we replace the stored examples matrix X with a learned embedding
K = WKX, stored outputs with V = W V Y , and create an input
embedding q = WQx, we can arrive at attention!

Prob Learning (UofT) STA414-Week 12 16 / 28

Connection to GPs

Going back to non-parametric kernl based methods (e.g. GPs), we
compare the input x to each of the training examples X using a kernel
to get a vector of similarity scores α = |K(x, xi)|mi=1, which we then use
to retrieve a weighted combination of the corresponding target values
yi as :

ŷ =

m∑
i=1

αiyi

If we replace the stored examples matrix X with a learned embedding
K = WKX, stored outputs with V = W V Y , and create an input
embedding q = WQx, we can arrive at attention!

Prob Learning (UofT) STA414-Week 12 16 / 28

Multi Head Attention and Self Attention

In practice it is advantageous to have multiple ”attention heads” each
with a different set of WQ,WK ,W V matrices.

Why do you think that is?

Do we really need all of them?

We then simply concatenate the outputs of all of the attention heads
together and multiplied by one final matrix WO that is learned as well,
this is called Multi Head Attention.

o = MHA(Q,K, V) = Concat(h1, . . . , hh)WO

= Concat(Attn(Q1,K1, V1), . . . , Attn(Qh,Kh, Vh))WO

Additionally, we can stack several identical Attention / MHA blocks on
top each other. This is called Self-Attention

Prob Learning (UofT) STA414-Week 12 17 / 28

Multi Head Attention and Self Attention

In practice it is advantageous to have multiple ”attention heads” each
with a different set of WQ,WK ,W V matrices.

Why do you think that is?

Do we really need all of them?

We then simply concatenate the outputs of all of the attention heads
together and multiplied by one final matrix WO that is learned as well,
this is called Multi Head Attention.

o = MHA(Q,K, V) = Concat(h1, . . . , hh)WO

= Concat(Attn(Q1,K1, V1), . . . , Attn(Qh,Kh, Vh))WO

Additionally, we can stack several identical Attention / MHA blocks on
top each other. This is called Self-Attention

Prob Learning (UofT) STA414-Week 12 17 / 28

Multi Head Attention and Self Attention

In practice it is advantageous to have multiple ”attention heads” each
with a different set of WQ,WK ,W V matrices.

Why do you think that is?

Do we really need all of them?

We then simply concatenate the outputs of all of the attention heads
together and multiplied by one final matrix WO that is learned as well,
this is called Multi Head Attention.

o = MHA(Q,K, V) = Concat(h1, . . . , hh)WO

= Concat(Attn(Q1,K1, V1), . . . , Attn(Qh,Kh, Vh))WO

Additionally, we can stack several identical Attention / MHA blocks on
top each other. This is called Self-Attention

Prob Learning (UofT) STA414-Week 12 17 / 28

Multi Head Attention and Self Attention

In practice it is advantageous to have multiple ”attention heads” each
with a different set of WQ,WK ,W V matrices.

Why do you think that is?

Do we really need all of them?

We then simply concatenate the outputs of all of the attention heads
together and multiplied by one final matrix WO that is learned as well,
this is called Multi Head Attention.

o = MHA(Q,K, V) = Concat(h1, . . . , hh)WO

= Concat(Attn(Q1,K1, V1), . . . , Attn(Qh,Kh, Vh))WO

Additionally, we can stack several identical Attention / MHA blocks on
top each other. This is called Self-Attention

Prob Learning (UofT) STA414-Week 12 17 / 28

Multi Head Attention and Self Attention

In practice it is advantageous to have multiple ”attention heads” each
with a different set of WQ,WK ,W V matrices.

Why do you think that is?

Do we really need all of them?

We then simply concatenate the outputs of all of the attention heads
together and multiplied by one final matrix WO that is learned as well,
this is called Multi Head Attention.

o = MHA(Q,K, V) = Concat(h1, . . . , hh)WO

= Concat(Attn(Q1,K1, V1), . . . , Attn(Qh,Kh, Vh))WO

Additionally, we can stack several identical Attention / MHA blocks on
top each other. This is called Self-Attention

Prob Learning (UofT) STA414-Week 12 17 / 28

MHA Illustration

Prob Learning (UofT) STA414-Week 12 18 / 28

Transformer

First proposed in a 2017 paper ”Attention is all you need”, the
Transformer architecture consists of two stacks (called Encoder and
Decoder) of blocks:

Prob Learning (UofT) STA414-Week 12 19 / 28

Transformer

First proposed in a 2017 paper ”Attention is all you need”, the
Transformer architecture consists of two stacks (called Encoder and
Decoder) of blocks:

Prob Learning (UofT) STA414-Week 12 19 / 28

Transformer

The Encoder consists of a stack of 6 blocks. Each block is further
split into two distinct sub-blocks.

The first is a Multi Head Self Attention mechanism, and the second is
a simple FFNN. Both of the sub-blocks have a residual connection
around them, followed by normalization.

Prob Learning (UofT) STA414-Week 12 20 / 28

Transformer

The Encoder consists of a stack of 6 blocks. Each block is further
split into two distinct sub-blocks.
The first is a Multi Head Self Attention mechanism, and the second is
a simple FFNN. Both of the sub-blocks have a residual connection
around them, followed by normalization.

Prob Learning (UofT) STA414-Week 12 20 / 28

Transformer

The Encoder consists of a stack of 6 blocks. Each block is further
split into two distinct sub-blocks.
The first is a Multi Head Self Attention mechanism, and the second is
a simple FFNN. Both of the sub-blocks have a residual connection
around them, followed by normalization.

Prob Learning (UofT) STA414-Week 12 20 / 28

Transformer

Similarily, the Decoder is also a stack of 6 blocks.

However in addition to the two sub-blocks of the encoder, it features a
3rd sub-block.
This 3rd sub-block performs multi-head attention over the output of
the encoder. This ”encoder-decoder attention” layer uses Q from the
previous decoder layer, and K,V from the output of the encoder.

Prob Learning (UofT) STA414-Week 12 21 / 28

Transformer

Similarily, the Decoder is also a stack of 6 blocks.
However in addition to the two sub-blocks of the encoder, it features a
3rd sub-block.

This 3rd sub-block performs multi-head attention over the output of
the encoder. This ”encoder-decoder attention” layer uses Q from the
previous decoder layer, and K,V from the output of the encoder.

Prob Learning (UofT) STA414-Week 12 21 / 28

Transformer

Similarily, the Decoder is also a stack of 6 blocks.
However in addition to the two sub-blocks of the encoder, it features a
3rd sub-block.
This 3rd sub-block performs multi-head attention over the output of
the encoder. This ”encoder-decoder attention” layer uses Q from the
previous decoder layer, and K,V from the output of the encoder.

Prob Learning (UofT) STA414-Week 12 21 / 28

Transformer

Similarily, the Decoder is also a stack of 6 blocks.
However in addition to the two sub-blocks of the encoder, it features a
3rd sub-block.
This 3rd sub-block performs multi-head attention over the output of
the encoder. This ”encoder-decoder attention” layer uses Q from the
previous decoder layer, and K,V from the output of the encoder.

Prob Learning (UofT) STA414-Week 12 21 / 28

Transformer

What about inputs?

The input embedding is a learneable ”static”
token embedding similar to the Word2Vec model we have seen in the
lecture 9.
What is ”Positional Encoding?” It’s either a learneable (representing
position in a sequence) embedding, or a predefined embedding of
different.

Prob Learning (UofT) STA414-Week 12 22 / 28

Transformer

What about inputs? The input embedding is a learneable ”static”
token embedding similar to the Word2Vec model we have seen in the
lecture 9.

What is ”Positional Encoding?” It’s either a learneable (representing
position in a sequence) embedding, or a predefined embedding of
different.

Prob Learning (UofT) STA414-Week 12 22 / 28

Transformer

What about inputs? The input embedding is a learneable ”static”
token embedding similar to the Word2Vec model we have seen in the
lecture 9.
What is ”Positional Encoding?”

It’s either a learneable (representing
position in a sequence) embedding, or a predefined embedding of
different.

Prob Learning (UofT) STA414-Week 12 22 / 28

Transformer

What about inputs? The input embedding is a learneable ”static”
token embedding similar to the Word2Vec model we have seen in the
lecture 9.
What is ”Positional Encoding?” It’s either a learneable (representing
position in a sequence) embedding, or a predefined embedding of
different.

Prob Learning (UofT) STA414-Week 12 22 / 28

Transformer

What about inputs? The input embedding is a learneable ”static”
token embedding similar to the Word2Vec model we have seen in the
lecture 9.
What is ”Positional Encoding?” It’s either a learneable (representing
position in a sequence) embedding, or a predefined embedding of
different.

Prob Learning (UofT) STA414-Week 12 22 / 28

Positional Encoding

Prob Learning (UofT) STA414-Week 12 23 / 28

Positional Encoding

Prob Learning (UofT) STA414-Week 12 24 / 28

How to train a Transformer

The original Transformer model was trained on an English ¡-¿ German
translations, where at each step the final decoder state was fed into a
simple Linear Layer followed by a softmax to produce probabilities over
next tokens.
Currently there are a large number of pre-training tasks (similar in
idea to W2V). One of the most common ones is Masked Language
Modelling, where we randomly replace 15% of tokens with ”[MASK]”,
and the goal of the model is to predict back the original token.

Prob Learning (UofT) STA414-Week 12 25 / 28

Vision Transformers

Prob Learning (UofT) STA414-Week 12 26 / 28

CLIP

Prob Learning (UofT) STA414-Week 12 27 / 28

Neural Net Demo in Jax

Demo

Prob Learning (UofT) STA414-Week 12 28 / 28

https://colab.research.google.com/github/google/jax/blob/main/docs/notebooks/neural_network_with_tfds_data.ipynb

