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Sequential data

So far, we only considered methods in which the samples we generate
are i.i.d:

We generated T samples x1:T = {x1, ..., xT }.

But each sample was independent from each other

xt ⇠ p(x) i.i.d.

This lecture, we will generate samples that are dependent.
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Sequential data

This also comes up when modelling the data: We generally assume
data was i.i.d, however this may be a poor assumption:

Sequential data is common in time-series modelling (e.g. stock
prices, speech, video analysis) or ordered (e.g. textual data, gene
sequences).

Recall the general joint factorization via the chain rule

p(x1:T ) =
TY

t=1

p(xt|xt�1, ..., x1) where p(x1|x0) = p(x1).

But this quickly becomes intractable for high-dimensional data
-each factor requires exponentially many parameters to specify as
a function of T.
So we make the simplifying assumption that our data can be
modeled as a first-order Markov chain

p(xt|x1:t�1) = p(xt|xt�1)
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Markov chains

We make the simplifying first-order Markov chain assumption:

p(xt|x1:t�1) = p(xt|xt�1)

This assumption greatly simplifies the factors in the joint
distribution

p(x1:T ) =
TY

t=1

p(xt|xt�1)
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Markov chains

A useful distinction to make at this point is between stationary
and non-stationary distributions that generate our data

I Stationary Markov chain: the distribution generating the data
does not change through time:
p(xt+1 = y|xt = x) = p(xt+2 = y|xt+1 = x)

I Non-stationary Markov chain: the distribution generating the
data is a function of time: The transition probabilities
p(xt+1 = y|xt = x) depend on the time t.

We only consider stationary Markov chains, (aka homogenous MCs).
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Higher-order Markov chains

In some cases, the first-order assumption may be restrictive (such as
when modeling natural language, where long-term dependencies occur
often). We can generalize to high-order dependence trivially

Second order:

p(xt|x1:t�1) = p(xt|xt�1, xt�2)

m-th-order

p(xt|x1:t�1) = p(xt|xt�1:t�m)
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Transition matrix

When xt is discrete (e.g. xt 2 {1, ...,K} which is called state
space), the conditional distribution p(xt|xt�1) can be written as a
K ⇥K matrix.

We call this the transition matrix A: Aij = p(xt = j|xt�1 = i), the
probability of going from state i to state j.

Notice

p(xt = j) =
X

i

p(xt = j|xt�1 = i)p(xt�1 = i),

=
X

i

Aijp(xt�1 = i).

Each row of the matrix sums to one,
P

j Aij = 1, so this is called a
stochastic matrix.
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Transition matrix

The transition matrix A: Aij = p(xt = j|xt�1 = i) is the
probability of going from state i to state j.

I We can visualize Markov chains via a directed
graph, where nodes represent states and
arrows represent legal transitions, i.e.,
non-zero elements of A.

I This is known as a state transition diagram.

The weights associated with the arcs are the probabilities.

For example, the trainsition matrix for the 2-state chain shown
above is given by

A =


1� ↵ ↵
� 1� �

�
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Chapman-Kolmogorov equations

The n-step transition matrix A(n) is defined as

Aij(n) = p(xt+n = j|xt = i)

which is the probability of getting from i to j in exactly n steps.

Notice that A(1) = A.

Chapman-Kolmogorov equations state that

Aij(m+n) =
KX

k=1

Aik(m)Akj(n) equivalently A(m+n) = A(m)A(n)

the probability of getting from i to j in m+ n steps is just the
probability of getting from i to k in m steps, and then from k to j
in n steps, summed up over all k.

So A(n) = A⇥A(n� 1) = A⇥A⇥A(n� 2) = · · · = An.
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Application: Markov Language Models

We could use Markov chains as language models, which are
distributions over sequences of words.

State space is all words and xt denotes the t-th word in a sentence.

We use a first-order Markov model, then p(xt = k|xt�1 = j).

I We estimate the transition matrix A. The
probability of any particular sentence of length T

p(x1:T |✓) =⇡(x1)A(x1, x2) · · ·A(xT�1, xT )

=
KY

j=1

⇡1[x1=j]
j

TY

t=2

KY

j=1

KY

k=1

A1[xt=k,xt�1=j]
jk

where ⇡(x1) is the probability of the sentence
starting with word x1.

Prob Learning (UofT) STA414-Week 5-1/2 11 / 20

Ig I don't like turtles

in A



Application: Markov Language Models

We could use Markov chains as language models, which are
distributions over sequences of words.

State space is all words and xt denotes the t-th word in a sentence.

We use a first-order Markov model, then p(xt = k|xt�1 = j).
I We estimate the transition matrix A. The

probability of any particular sentence of length T

p(x1:T |✓) =⇡(x1)A(x1, x2) · · ·A(xT�1, xT )

=
KY

j=1

⇡1[x1=j]
j

TY

t=2

KY

j=1

KY

k=1

A1[xt=k,xt�1=j]
jk

where ⇡(x1) is the probability of the sentence
starting with word x1.

Prob Learning (UofT) STA414-Week 5-1/2 11 / 20



Application: Markov Language Models

We use MLE to estimate A from data D = {x(1), ..., x(N)}.
Likelihood of any particular sentence x1:T of length T

p(x1:T |✓) =
KY

j=1

⇡1[x1=j]
j

TY

t=2

KY

j=1

KY

k=1

A1[xt=k,xt�1=j]
jk

Log-likelihood of a sentence x(i) = (x(i)1 , ..., x(i)Ti
)

log p(D|✓) =
NX

i=1

log p(x(i)|✓) =
X

j

N1
j log ⇡j +

X

j

X

k

Njk logAjk

where we define the counts

N1
j =

NX

i=1

1[xi1 = j], Njk =
NX

i=1

Ti�1X

t=1

1[xi,t = j, xi,t+1 = k].

The MLE is given as ⇡̂j =
N1

jP
j N

1
j

Âjk =
NjkP
k Njk

.
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Âjk =
NjkP
k Njk

.

Prob Learning (UofT) STA414-Week 5-1/2 12 / 20



Application: Markov Language Models

We use MLE to estimate A from data D = {x(1), ..., x(N)}.
Likelihood of any particular sentence x1:T of length T

p(x1:T |✓) =
KY

j=1

⇡1[x1=j]
j

TY

t=2

KY

j=1

KY

k=1

A1[xt=k,xt�1=j]
jk

Log-likelihood of a sentence x(i) = (x(i)1 , ..., x(i)Ti
)

log p(D|✓) =
NX

i=1

log p(x(i)|✓) =
X

j

N1
j log ⇡j +

X

j

X

k

Njk logAjk

where we define the counts

N1
j =

NX

i=1

1[xi1 = j], Njk =
NX

i=1

Ti�1X

t=1

1[xi,t = j, xi,t+1 = k].

The MLE is given as ⇡̂j =
N1

jP
j N

1
j
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Stationary distribution of a Markov chain

We are often interested in the long term distribution over states,
which is known as the stationary distribution of the chain.

Let A be the transition matrix, e.g. p(xt+1 = j|xt = i) = Aij and
⇡t(j) = p(xt = j) be the probability of being in state j at time t.
Thus the initial distribution is given by ⇡0 and

⇡1(j) =
X

i

⇡0(i)Aij .

Assume that ⇡t is a row vector with entries ⇡t(j). This vector is
the distribution of xt, e.g. p(xt = j) = ⇡t(j).

⇡1 = ⇡0A or more generally ⇡t = ⇡0A
t.

Do this infinitely many steps, the distribution of xt may converge

⇡ = ⇡A.

then we have reached the stationary distribution (aka the invariant
distribution) of the Markov chain.
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Stationary distribution

We can find the stationary distribution of a Markov chain by
solving the eigenvector equation

AT v = v and set ⇡ = vT .

v is the eigenvector of AT with eigenvalue 1.

Need to normalize!
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Detailed balance equations

A MC is called irreducible if we can get from any state to any
other state.

A MC is called regular if the transition matrix satisfies An
ij > 0

for some n and all i, j.

A MC is time reversible if there exists a distribution ⇡ such that

⇡iAij = ⇡jAji

This is called the detailed balance equations.
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Detailed balance equations

Theorem
If a Markov chain with transition matrix A is regular and satisfies
detailed balance wrt distribution ⇡, then ⇡ is a stationary distribution.

Proof:
X

i

⇡iAij =
X

i

⇡jAji = ⇡j
X

i

Aji = ⇡j =) ⇡ = ⇡A.
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Metropolis-Hastings

Importance and rejection sampling work only if the proposal density
q(x) is similar to p(x). In high dimensions, it is hard to find one such q.

The Metropolis–Hastings algorithm
instead makes use of a proposal
density q which depends on the
current state x(t).

The density q(x0|x(t)) might be a
simple distribution such as a
Gaussian centered on the current
x(t), but can be any density from
which we can draw samples.

In contrast to importance and
rejection sampling, it is not
necessary q(x0|x(t)) to look at all
similar to p(x).
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MCMC
In contrast to rejection sampling,
where the accepted points {x(t)} are
independent, MCMC methods
generate a dependent sequence.

Each sample x(t) has a probability
distribution that depends on the
previous value, x(t�1).

MCMC methods need to be run for
a time in order to generate samples
that are from the target
distribution p.

We can still do Monte Carlo estimaton for large enough T to estimate
the mean of a test function �:

Ex⇠p[f(x)] ⇡
1

T

TX

t=1

f(x(t)).
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Metropolis-Hastings algorithm

As before, we assume we can evaluate p̃(x) for any x. The procedure is
as follows:

A tentative new state x0 is generated from the proposal density
q(x0|x(t)). To decide whether to accept the new state, we compute

a =
p̃(x0)q(x(t)|x0)
p̃(x(t))q(x0|x(t))

I If a � 1 then the new state is accepted.
I Otherwise, the new state is accepted with probability a.
I If accepted, set x(t+1) = x0. Otherwise, set x(t+1) = x(t).

This is a Markov chain with stationary distribution ⇡(x) is chosen
to be the target distribution p(x).

The derivation of the algorithm starts with the condition of
detailed balance.
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Summary

To sample from a distribution, we can design a Markov chain with
its invariance distribution as the target (aka MCMC).

Metropolis-Hastings (MH) method can sample from
high-dimensional targets.
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