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Overview

@ Markov chains
e Metropolis-Hastings
@ Markov chain Monte Carlo

@ Assignment 2 to be released today.
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Sequential data

So far, we only considered methods in which the samples we generate
are 1.i.d:

e We generated T samples x1.7 = {x1, ..., z7}.
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Sequential data

So far, we only considered methods in which the samples we generate
are 1.i.d:

e We generated T samples x1.7 = {x1, ..., z7}.

e But each sample was independent from each other

xy ~ p(x) iid.
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Sequential data

So far, we only considered methods in which the samples we generate
are 1.i.d:

e We generated T samples x1.7 = {x1, ..., z7}.

e But each sample was independent from each other

xy ~ p(x) iid.

@ This lecture, we will generate samples that are dependent.
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Sequential data

This also comes up when modelling the data: We generally assume
data was i.i.d, however this may be a poor assumption:
@ Sequential data is common in time-series modelling (e.g. stock
prices, speech, video analysis) or ordered (e.g. textual data, gene
sequences).
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Sequential data

This also comes up when modelling the data: We generally assume
data was i.i.d, however this may be a poor assumption:

@ Sequential data is common in time-series modelling (e.g. stock
prices, speech, video analysis) or ordered (e.g. textual data, gene
sequences).

@ Recall the general joint factorization via the chain rule

p(z1.7) Hp Tt|T1-1,...,21) where p(x1|zo) = p(x1).
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Sequential data

This also comes up when modelling the data: We generally assume
data was i.i.d, however this may be a poor assumption:

@ Sequential data is common in time-series modelling (e.g. stock
prices, speech, video analysis) or ordered (e.g. textual data, gene
sequences).

@ Recall the general joint factorization via the chain rule

p(z1.7) Hp Tt|T1-1,...,21) where p(x1|zo) = p(x1).

e But this quickly becomes intractable for high-dimensional data
-each factor requires exponentially many parameters to specify as
a function of T,
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Sequential data

This also comes up when modelling the data: We generally assume
data was i.i.d, however this may be a poor assumption:

@ Sequential data is common in time-series modelling (e.g. stock
prices, speech, video analysis) or ordered (e.g. textual data, gene
sequences).

@ Recall the general joint factorization via the chain rule

p(z1.7) Hp (z¢|@—1,...;21) where p(x1|zo) = p(x1).

e But this quickly becomes intractable for high-dimensional data
-each factor requires exponentially many parameters to specify as
a function of T,

@ So we make the simplifying assumption that our data can be
modeled as a first-order Markov chain

p(xe|r1e—1) = p(ae|Ti—1)
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Markov chains

I X9 X3

@ We make the simplifying first-order Markov chain assumption:

p(ajt|x1:t—1) — p($t|$t_1)
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Markov chains

@ We make the simplifying first-order Markov chain assumption:

p(wi|z1-1) = p(we|21-1)
e This assumption greatly simplifies the factors in the joint

distribution
p(z1.1) Hp (t|@i—1) F(X,, /}(o)-
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Markov chains

@ A useful distinction to make at this point is between stationary
and non-stationary distributions that generate our data

» Stationary Markov chain: the distribution generating the data
does not change through time:

p(«’ﬂt+1 = y!mt = 55) = p($t+2 — y’$t+1 = QU)

=Y

[
; /2: F(Xﬁz jff) }Xm?(
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Markov chains

@ A useful distinction to make at this point is between stationary
and non-stationary distributions that generate our data

» Stationary Markov chain: the distribution generating the data
does not change through time:
p(Tt+1 = ylre = ) = p(@t42 = ylTi41 = )

» Non-stationary Markov chain: the distribution generating the
data is a function of time: The transition probabilities
p(xir1 = y|xy = x) depend on the time .
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Markov chains

@ A useful distinction to make at this point is between stationary
and non-stationary distributions that generate our data

» Stationary Markov chain: the distribution generating the data
does not change through time:

P(Teg1 = ylar = @) = p(Tey2 = Y|Ti41 = @)
» Non-stationary Markov chain: the distribution generating the
data is a function of time: The transition probabilities

p(xir1 = y|xy = x) depend on the time .

We only consider stationary Markov chains, (aka homogenous MCs).
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Higher-order Markov chains

*—0—0—

e

In some cases, the first-order assumption may be restrictive (such as
when modeling natural language, where long-term dependencies occur
often). We can generalize to high-order dependence trivially

vy

p(we|r1:e-1) = p(we|wi—1, 4-2)

@ Second order:

@ m-th-order
b

p(xtlilil:t—l) = P(iUt\il?t—lzt—m)
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Transition matrix

@ When x; is discrete (e.g. x; € {1, ..., K} which is called state

space), the conditional distribution p(x¢|x;—1) can be written as a
K x K matrix.

4&7 S \r)_z
NPV
J
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Transition matrix

@ When x; is discrete (e.g. x; € {1, ..., K} which is called state

space), the conditional distribution p(x¢|x;—1) can be written as a
K x K matrix. 7‘

e We call this the transition matrix A: A;; = p(z; = jlx—1 = 1), the
probak@y of gaing from state ¢ to state j.

@aib” (i le» SW(QV@ 2+ 1
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Transition matrix

@ When x; is discrete (e.g. x; € {1, ..., K} which is called state
space), the conditional distribution p(x¢|x;—1) can be written as a
K x K matrix.

e We call this the transition matrix A: A;; = p(z; = jlx—1 = 1), the
probability of going from state ¢ to state j.

@ Notice L J, \L

plre=J) = Zp(xt = jlri1 = i)p(re—1 = 1),

= Z Aiip(Ti—1 = 1).
7
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Transition matrix

@ When x; is discrete (e.g. x; € {1, ..., K} which is called state
space), the conditional distribution p(x¢|x;—1) can be written as a
K x K matrix.

e We call this the transition matrix A: A;; = p(z; = jlx—1 = 1), the
probability of going from state ¢ to state j.

@ Notice

plre=J) = Zp(xt = jlri1 = i)p(re—1 = 1),

= Z Aijp(a:t_l = ’L)

e Fach row of the matrix sums to one, > j A;j = 1, so this is called a
stochastic matrix.
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Transition matrix

o The transition matrix A: A;; = p(zy = j|zi—1 = ©) is the
probability of going from state ¢ to state j.

» We can visualize Markov chains via a directed
graph, where nodes represent states and

arrows represent legal transitions, i.e.,
non-zero elements of A.

1 — « 1_6

G2 1
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Transition matrix

o The transition matrix A: A;; = p(zy = j|zi—1 = ©) is the
probability of going from state ¢ to state j.
1—a -5 » We can visualize Markov chains via a directed
o graph, where nodes represent states and
8/\ arrows represent legal transitions, i.e.,
non-zero elements of A.
B » This is known as a state transition diagram.
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Transition matrix

o The transition matrix A: A;; = p(zy = j|zi—1 = ©) is the
probability of going from state ¢ to state j.
1—a -5 » We can visualize Markov chains via a directed
o graph, where nodes represent states and
8/\ arrows represent legal transitions, i.e.,
non-zero elements of A.
B » This is known as a state transition diagram.
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Transition matrix

o The transition matrix A: A;; = p(zy = j|zi—1 = ©) is the
probability of going from state ¢ to state j.

» We can visualize Markov chains via a directed

- o 1-5 graph, where nodes represent states and
arrows represent legal transitions, i.e.,
non-zero elements of A.

P » This is known as a state transition diagram.

e The weights associated with the arcs are the probabilities.

e For example, the trainsition matrix for the 2-state chain shown

above is given by [1 ]
gt o«
Ve g 1-p
OD/O O 2
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Chapman-Kolmogorov equations

@ The n-step transition matrix A(n) is defined as

\Z
Aij(n) = p(Ti4n = jlze = 1)
7 =7
which is the probability of getting from ¢ to j in exactly n steps.
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Chapman-Kolmogorov equations

@ The n-step transition matrix A(n) is defined as

Aij(n) = p(@pyn = jlay = 1)

which is the probability of getting from ¢ to j in exactly n steps.
e Notice that A(1) = A.
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Chapman-Kolmogorov equations

@ The n-step transition matrix A(n) is defined as

Aij(n) = p(@pyn = jlay = 1)

which is the probability of getting from ¢ to j in exactly n steps.

e Notice that A(1) = A. g Z
o Chapm/alm-Kolmogorov equations state that X
N

/ -
l \’/ Kc/ )Qé'(,.. k} &O—POS
A;j(m+n) ZA”‘" m)Ag;(n) equivalently A(m+n) = A(m)A(n)

the probabilit;l of getting from ¢ to j in m + n steps is just the
probability of getting from ¢ to k£ in m steps, and then from k to j
in n steps, summed up over all k.
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Chapman-Kolmogorov equations

@ The n-step transition matrix A(n) is defined as

Aij(n) = p(@pyn = jlay = 1)

which is the probability of getting from ¢ to j in exactly n steps.
e Notice that A(1) = A.

e Chapman-Kolmogorov equations state that
A;j(m+n) ZA”‘? m)Ag;(n) equivalently A(m+n) = A(m)A(n)

the probability of getting from 2 to 7 in m + n steps is just the
probability of getting from ¢ to k£ in m steps, and then from k to j
in n steps, summed up over all k.

@ SoAn)=AxAn—1)=AxAxAn—-2)=-.--= A",

)
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Application: Markov Language Models

@ We could use Markov chains as language models, which are
distributions over sequences of words.

@ State space is all words and x; denotes the ¢-th word in a sentence.

e We use a first-order Markov model, then p(x; = k|z,—1 = j).

I S e e s
@ e))

0.66
start — I
0.33 ' A
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Application: Markov Language Models

@ We could use Markov chains as language models, which are
distributions over sequences of words.

@ State space is all words and x; denotes the ¢-th word in a sentence.

@ We use a first-order Markov model, then p(xy = k|xi—1 = j).
» We estimate the transition matrix A. The
probability of any particular sentence of length T'

p(z1.7]0) =m(21)A(21,22) - - - A(TT—1, T7T)

(

K

H 1[z1=]] HHHAl[l’t—k? Tt —1=7]
J

t=2j=1k=1

where 7(x1) is the probability of the sentence
starting with word z;.
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Application: Markov Language Models

o We use MLE to estimate A from data D = {z(1), ... 2N},
e Likelihood of any particular sentence xi.7 of length T°

K T K K
1[901 =] Lz =Fk,xt—1=]]
ptovrlo) = [ LI I 4
=1 =2 j=1 k=1
Ty IS




Application: Markov Language Models

o We use MLE to estimate A from data D = {z(1), ... 2N},
e Likelihood of any particular sentence xi.7 of length T°

K T K K )
1z 1z VTt —
plarrld) = [ m " P TITT IT A5
7=1 t=2j5=1k=1
o Log-likelihood of a sentence z(9) = (azg ), vy az%))

log p(D|0) = Zlogp (Z)|9 ZNj-llogﬂj—FZZNjklogAjk
J j k

where we define the counts

N N T,—1
= E Lz = 7], Nj = E E lxir =7, %141 = k.
=1 =1 t=1
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Application: Markov Language Models

o We use MLE to estimate A from data D = {z(1), ... 2N},
e Likelihood of any particular sentence xi.7 of length T°

K T K K )
1z 1z VTt —
plarrld) = [ m " P TITT IT A5
7=1 t=2j5=1k=1
o Log-likelihood of a sentence z(9) = (azg ), vy az%))

log p(D|0) = Zlogp (2] = ZNj-l log m; + ZZNjk log A,
J j k

where we define the counts
N T;—1

N
:Zl['le :] NJ"‘?:ZZ 1[$i,t:j7xi,t—l—1:k]’

i=1 i=1 t=1
[V /
A N ke
__ Ik
e The MLE is given as 7; = > N1 Ajp, = SN
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Stationary distribution of a Markov chain

e We are often interested in the long term distribution over states,
which is known as the stationary distribution of the chain.

h v
‘0 J
7

7, 5d7.
507 p
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Stationary distribution of a Markov chain

e We are often interested in the long term distribution over states,
which is known as the stationary distribution of the chain.

o Let A be the transition matrix, e.g. p(xi41 = jloe = i) = A;; and
m(j) = p(xy = j) be the probability of being in state j at time .
Thus the initial distribution is given by my and

m(4) = ) mo(i)Aij.

s M

o (X) ’
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Stationary distribution of a Markov chain

e We are often interested in the long term distribution over states,
which is known as the stationary distribution of the chain.

o Let A be the transition matrix, e.g. p(xi41 = jloe = i) = A;; and
m(j) = p(xy = j) be the probability of being in state j at time .
Thus the initial distribution is given by my and

m1(j) = Zﬂo(i)Az‘j-

e Assume that 7 is a row vector with entries m;(j). This vector is
the distribution of x4, e.g. p(xy = j) = m (). / J, J

m = mpA or more generally m = moA’.

Ay c &
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Stationary distribution of a Markov chain

e We are often interested in the long term distribution over states,
which is known as the stationary distribution of the chain.

o Let A be the transition matrix, e.g. p(xi41 = jloe = i) = A;; and
m(j) = p(xy = j) be the probability of being in state j at time .
Thus the initial distribution is given by my and

m1(j) = Zﬂo(i)Az‘j-

e Assume that 7 is a row vector with entries m;(j). This vector is
the distribution of x4, e.g. p(xy = j) = m ().

m = moA or more generally m = myAL.
@ Do this infinitely many steps, the d‘istribution of x; may converge
v

T =TA.

then we have reached the stationary distribution (aka the invariant
distribution) of the Markov chain.
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Stationary distribution

@ We can find the stationary distribution of a Markov chain by

solving the eigenvector equation
Atv=v andset 7=0o'.

v is the eigenvector of AT with eigenvalue 1.
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Stationary distribution

@ We can find the stationary distribution of a Markov chain by
solving the eigenvector equation

ATy =v andset 7 =o',

v is the eigenvector of AT with eigenvalue 1.

@ Need to normalize!
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Detailed balance equations

@ A MC is called irreducible if we can get from any state to any

other state.
TS 03
)7
jLO/

Prob Learning (UofT)

STA414-Week 5-1/2 15 /20



Detailed balance equations

@ A MC is called irreducible if we can get from any state to any
other state. J

o A MC is called regular if the transition matrix satisfies A%, > 0
for some n and all 7, j.

OD
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Detailed balance equations

@ A MC is called irreducible if we can get from any state to any
other state.

o A MC is called regular if the transition matrix satisfies A%, > 0
for some n and all i, j.

e A MC is time reversible if there exists a distribution 7 such that
7Tz'Az'j = 7TjAjz'

This is called the detailed balance equations.
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Detailed balance equations

@ A MC is called irreducible if we can get from any state to any
other state.

o A MC is called regular if the transition matrix satisfies A%, > 0
for some n and all i, j.

e A MC is time reversible if there exists a distribution 7 such that
WiAij = 7TjAjz'

This is called the detailed balance equations.
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Detailed balance equations

@ A MC is called irreducible if we can get from any state to any
other state.

o A MC is called regular if the transition matrix satisfies A%, > 0
for some n and all i, j.

e A MC is time reversible if there exists a distribution 7 such that
WiAij = 7TjAjz'
This is called the detailed balance equations.

Detailed balance means —z—x’ and —xz’ — x are equally probable:

STA414-Week 5-1/2 15 /20

Prob Learning (UofT)



Detailed balance equations

If a Markov chain with transition matrix A is regular and satisfies
detailed balance wrt distribution 7, then 7 is a stationary distribution.
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Detailed balance equations

If a Markov chain with transition matrix A is regular and satisfies
detailed balance wrt distribution 7, then 7 is a stationary distribution.

Proof:
d 2

ZWZ’AZ'J - Zﬂl jAji :WjZAji =7; = m=TmA.

i L ) 1 1
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Metropolis-Hastings wed|

J
Importance and rejection sampling Workuonly if the proposal density
q(x) is similar to p(z). In high dimensions, it is hard to find one such gq.
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Metropolis-Hastings

Importance and rejection sampling work only if the proposal density
q(x) is similar to p(z). In high dimensions, it is hard to find one such gq.

SQ(x; ') @ The Metropolis—Hastings algorithm
P instead makes use of a proposal
density ¢ which depends on the
current state z(t).

J.\l;
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Metropolis-Hastings

Importance and rejection sampling work only if the proposal density
q(x) is similar to p(z). In high dimensions, it is hard to find one such gq.

71 Q(z; V) @ The Metropolis—Hastings algorithm
P instead makes use of a proposal
density ¢ which depends on the
current state z(t).

o The density ¢(@/|z®)) might be a
simple distribution such as a
Gaussian centered on the current
) but can be any density from
which we can draw samples.
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Metropolis-Hastings

Importance and rejection sampling work only if the proposal density
q(x) is similar to p(z). In high dimensions, it is hard to find one such gq.

1Q(x; (1)) @ The Metropolis—Hastings algorithm
i instead makes use of a proposal
density ¢ which depends on the
current state z(%).

o The density g(2/|z®)) might be a
simple distribution such as a
Gaussian centered on the current
) but can be any density from
which we can draw samples.

@ In contrast to importance and
rejection sampling, it is not
necessary ¢(z'|z®) to look at all
similar to p(x).
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MCMC

@ In contrast to rejection sampling,
where the accepted points {z(¥)} are

independent, MCMC methods
generate a dependent sequence.

Prob Learning (UofT)

STA414-Week 5-1/2 18 /20



MCMC

@ In contrast to rejection sampling,
where the accepted points {z(¥)} are
independent, MCMC methods

generate a dependent sequence.

o Each sample 2 has a probability
distribution that depends on the
previous value, z(t=1),
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MCMC

@ In contrast to rejection sampling,
where the accepted points {z(¥)} are
independent, MCMC methods

generate a dependent sequence.

o Each sample 2 has a probability
distribution that depends on the
previous value, z(t=1),

o MCMC methods need to be run for
a time in order to generate samples

that are from the target
distribution p.
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MCMC

@ In contrast to rejection sampling,
where the accepted points {z(¥)} are
independent, MCMC methods

generate a dependent sequence.

o Each sample 2 has a probability
distribution that depends on the
previous value, z(t=1),

e MCMC methods need to be run for
a time in order to generate samples
that are from the target
distribution p.

We can still do Monte Carlo estimaton for large enough 71" to estimate

the mean of a test function ¢:

1 T
Eanplf(2)] = = D f(=")
t=1
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Metropolis-Hastings algorithm

As before, we assume we can evaluate p(z) for any z. The procedure is
as follows:

e A tentative new state/&’ is generated from the proposal density
q(z'|z®). To decide whether to accept the new state, we compute

w . ?(Xﬁx‘)
U

LW T~ .

t 3
'}( X1 plx)
» If a > 1 then the new state is accepted.

~— Otherwise, the new state is accepted with probability a.
» If accepted, set z(*t1) = 2/, Otherwise, set (11 = z(®).

7 i

-
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Metropolis-Hastings algorithm

As before, we assume we can evaluate p(z) for any z. The procedure is
as follows:

e A tentative new state 2’ is generated from the proposal density
q(z'|z®). To decide whether to accept the new state, we compute

p(a")q(z"]a’)
pz®)q(a’|2®)

a =

» If a > 1 then the new state is accepted.
» Otherwise, the new state is accepted with probability a.
» If accepted, set z(*t1D) = 2/, Otherwise, set (11 = z(®).

e This is a Markov chain with stationary distribution 7 (x) is chosen
to be the target distribution p(x).
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Metropolis-Hastings algorithm

As before, we assume we can evaluate p(z) for any z. The procedure is
as follows:

e A tentative new state 2’ is generated from the proposal density
q(z'|z®). To decide whether to accept the new state, we compute
(KG)’ I)
p(z')q z') e RS ?
pa®)atz) Y [ qr( )
» If a > 1 then the new state is accepted.

» Otherwise, the new state is accepted with probability a.
» If accepted, set z(*t1D) = 2/, Otherwise, set (11 = z(®).

a =

A

e This is a Markov chain with stationary distribution 7 (x) is chosen
to be the target distribution p(x).

@ The derivation of the algorithm starts with the condition of
detailed balance.
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Summary

e To sample from a distribution, we can design a Markov chain with
its invariance distribution as the target (aka MCMC).
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Summary

e To sample from a distribution, we can design a Markov chain with
its invariance distribution as the target (aka MCMC).

e Metropolis-Hastings (MH) method can sample from
high-dimensional targets.
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